
Acta Numerica (2019), pp. 541–633 c© Cambridge University Press, 2019

doi:10.1017/S0962492919000035 Printed in the United Kingdom

Approximation algorithms in
combinatorial scientific computing

Alex Pothen∗

Department of Computer Science, Purdue University,

West Lafayette, IN 47907, USA

E-mail: apothen@purdue.edu

S. M. Ferdous†

Department of Computer Science, Purdue University,

West Lafayette, IN 47907, USA

E-mail: sferdou@purdue.edu

Fredrik Manne
Department of Informatics, University of Bergen,

N-5020 Bergen, Norway

E-mail: fredrikm@ii.uib.no

We survey recent work on approximation algorithms for computing degree-
constrained subgraphs in graphs and their applications in combinatorial sci-
entific computing. The problems we consider include maximization versions
of cardinality matching, edge-weighted matching, vertex-weighted matching
and edge-weighted b-matching, and minimization versions of weighted edge
cover and b-edge cover. Exact algorithms for these problems are impractical
for massive graphs with several millions of edges. For each problem we dis-
cuss theoretical foundations, the design of several linear or near-linear time
approximation algorithms, their implementations on serial and parallel com-
puters, and applications. Our focus is on practical algorithms that yield good
performance on modern computer architectures with multiple threads and
interconnected processors. We also include information about the software
available for these problems.

∗ The work of the first two authors was supported in part by US NSF grant CCF-1637534;
the US Department of Energy through grant DE-FG02-13ER26135; and the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the DOE Office of Science
and the NNSA.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

542 A. Pothen, S. M. Ferdous and F. Manne

CONTENTS

1 Introduction 542
2 Maximum cardinality matching 545
3 Edge-weighted matching 550
4 The b-matching problem 576
5 Vertex-weighted matching 583
6 The edge cover problem 587
7 The b-edge cover problem 590
8 Other approximation algorithms in CSC 619
9 Conclusions 622
References 626

1. Introduction

We discuss recent progress in the design of approximation algorithms for two
problems on graphs, with their applications to combinatorial scientific com-
puting (CSC). The problems involve the computation of degree-constrained
subgraphs of a graph that might represent its significant subgraphs. Com-
puting these subgraphs reduce the computational costs and memory re-
quired of algorithms that obtain information from the graph, such as semi-
supervised classification in machine learning, or the solution of sparse sys-
tems of linear equations. These subgraphs also help remove noise from the
data so that machine learning algorithms perform better in classification
tasks.

The first problem we consider is the classical one of computing a matching
in a graph. A matching is a subset of vertex-disjoint edges; hence there is at
most one edge of the subset incident on each vertex in the graph. Here we
could seek to maximize the cardinality of a matching, or when weights are
assigned to edges, maximize the sum of the weights of edges in a matching.
We will also discuss a less studied variant where the weights are on the
vertices instead of the edges. A generalization of matching is the b-matching
problem, where we are given natural numbers b(v) for each vertex v in the
graph, and are required to choose at most b(v) matched edges incident on
v. When weights are assigned to the edges, we seek to maximize the sum
of weights of the matched edges.

The second problem we consider is edge cover, where we are required to
choose at least one edge incident on each vertex to belong to the edge cover.
Here we seek to minimize the cardinality of the edges in the cover, or the
sum of weights of the edges in the cover. The generalization of an edge
cover leads to the b-edge cover problem, where given natural numbers b(v)
for each vertex v, we are required to choose at least b(v) edges incident on v

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 543

to belong to the edge cover. Again, we seek to minimize the sum of weights
of the edges in the cover. Our work on this problem was motivated by an
application to a data privacy problem called adaptive anonymity.

Both of these problems and their variants have polynomial time algo-
rithms to solve them; however, the asymptotic run time is larger than the
product of the number of edges times the square root of the number of ver-
tices, and this is too high to be practical for graphs with millions or billions
of vertices and edges. Furthermore, exact algorithms for these problems
have little concurrency. Hence we turn to the design of approximation algo-
rithms that have near-linear time complexity in the size of the graph. We
also design approximation algorithms that possess high concurrency, so that
they can be implemented efficiently on parallel computers.

An exact algorithm for an optimization problem computes the optimum
value of its objective function. An approximation algorithm for an optim-
ization problem computes a value that is within some factor α (a constant
or a function of the problem size) of the optimal value for all problem in-
stances. For a maximization problem (as in matching), the ratio of the
value computed by the approximation algorithm to the maximum value is
at least α < 1 for all instances; for a minimization problem (as in edge
cover), the ratio of the value computed by the approximation algorithm to
the optimal value is at most α > 1, again for all instances. We say that this
is an α-approximation algorithm for the problem, and that the approxim-
ation ratio of the algorithm is α. Note that this worst-case approximation
ratio is obtained analytically by an a priori argument, and the approxim-
ation ratio for a specific instance might be much better than α. For many
optimization problems, known exact algorithms might not have polynomial
time complexity. Also, for many problems, for any ε > 0 if an algorithm
with approximation ratio n(1−ε) exists then P = NP, which suggests that
a polynomial time approximation algorithm might not exist. An algorithm
for an optimization problem for which we cannot obtain an approximation
ratio is called a heuristic algorithm. This is the situation for many prob-
lems in CSC, and we can evaluate an algorithm by empirically comparing
the value of the objective function it computes with other algorithms on a
collection of test problems.

There are several advantages that approximation algorithms have over
exact algorithms, which we enumerate as follows.

• Approximation algorithms have lower run time complexity relative to
exact algorithms, often linear or nearly linear in the size of the prob-
lem. Exact algorithms with polynomial run times can be too slow
for massive graphs, but the faster approximation algorithms may be
practical. Furthermore, in practice these approximation algorithms
compute solutions that are nearly optimal.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

544 A. Pothen, S. M. Ferdous and F. Manne

• Approximation algorithms are conceptually simpler than exact algo-
rithms, and their proofs of correctness could also be simpler.

• Approximation algorithms are easier to implement when compared to
the more sophisticated exact algorithms, which is practically an im-
portant reason for their widespread use.

• Approximation algorithms can be designed to have more concurrency
than exact algorithms. The simplicity of implementation of approxim-
ation algorithms is even more important for algorithms to be imple-
mented on parallel computers. This is a major motivating factor for
our work on matchings and edge covers.

• Often a matching or edge cover algorithm is used at each step of an ap-
proximation algorithm or a heuristic to solve another problem. In this
case, exact matchings are not required, and its use increases the run
time of the algorithm, limiting the size of the problems that could be
solved. This is the case for network alignment (Khan, Gleich, Pothen
and Halappanavar 2012), for adaptive anonymity (Khan et al. 2018a),
k-nearest neighbour graph construction (Ferdous, Pothen and Khan
2018), ontology alignment (Kolyvakis, Kalousis, Smith and Kiritsis
2018), etc.

Approximation algorithms have been studied in the discrete mathematics,
theoretical computer science and operations research communities. Books
discussing approximation algorithms include Hochbaum (1997), Vazirani
(2003), Williamson and Shmoys (2011) and Du, Ko and Hu (2012). An
earlier survey on approximation algorithms for the matching problem was
provided by Hougardy (2009). Our discussion of the matching problem is
fairly disjoint from this survey; we have included more recent algorithms
such as the Suitor and b-Suitor algorithms, and problems such as b-
matching and the vertex-weighted matching problem, as well as parallel
algorithms. We are not aware of an earlier survey of the edge cover and
b-edge cover problems. Goemans and Williamson (1997) survey the primal–
dual method for designing approximation algorithms and apply it to several
network design problems, including vertex cover and edge cover.

We conclude this section with a brief discussion of the research area
and community of combinatorial scientific computing (CSC). Research in
CSC focuses on the design, theoretical analysis, computational evaluation
and deployment of combinatorial algorithms to solve problems in compu-
tational science and engineering. The CSC community has its roots in
the research areas of sparse matrix computations, algorithmic differenti-
ation and parallel computing. This community was formally organized
in the early 2000s, and biennial workshops on CSC have been held un-
der the auspices of the Society for Industrial and Applied Mathematics

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 545

(SIAM) since 2004. Information about these meetings and proceedings
published by SIAM is available at www.csc-research.org. Snapshots of re-
cent research in CSC are included in the collection of articles edited by
Naumann and Schenk (2012); the first chapter by Hendrickson and Pothen
provides more detail on the historical development and emerging research
areas of CSC. More recently the CSC community has joined with other com-
putational discrete mathematicians to organize a SIAM Activity Group on
Applied and Computational Discrete Algorithms. Additional information
is available at www.siam.org/membership/Activity-Groups/detail/applied-and-
computational-discrete-algorithms.

2. Maximum cardinality matching

2.1. Elementary definitions and concepts

We begin with notation and concepts needed for discussing matching and
edge cover problems. We consider a simple, loopless, undirected graph
G = (V,E), where V is the set of vertices, E is the set of edges, and
|V | ≡ n and |E| ≡ m. The neighbours of a vertex u will be denoted by
adj(u) or N(u); the vertex u itself is not a member of the adjacency set.
The cardinality of the adjacency set is the degree of the vertex, denoted
deg (u). The maximum degree of a vertex in the graph will be denoted ∆.

An edge e = (u, v) has the vertices u and v as its endpoints. We say that
e is an edge incident on u (and v), and that u and v are adjacent vertices.
Two edges e and f are adjacent or are neighbours if they share a common
endpoint. The set of edges adjacent to e = (u, v) consists of other edges in
G with u or v as an endpoint.

A path in a graph is sequence of edges {(v1, v2), (v2, v3), . . . (vk, vk+1)},
where the vertices are distinct and consecutive edges share an endpoint. The
length of the path is the number of edges k. A cycle is the concatenation of
a path and an edge joining its first and last vertices, (v1, vk+1).

A matching in the graph G is a subset of vertex-disjoint edges M . Thus
at most one edge in M is incident on each vertex in V . We say that an edge
in M is a matched edge, and the endpoints of a matched edge are matched
vertices. If an edge belongs to E \M then it is unmatched, and similarly
for unmatched vertices.

Let M be a matching. Then a path or cycle P is alternating if it con-
sists of edges drawn alternately from M and E \M . An alternating path
P is an M -augmenting path if it begins and ends with an unmatched edge.
An augmenting path has one more unmatched edge than matched edges.
By exchanging matched edges with unmatched edges along the augmenting
path, i.e. by computing M ⊕ P , we obtain a matching M ′ with one more
matched edge than M . (Here A ⊕ B = (A \ B) ∪ (B \ A).) In some situ-
ations, we consider two matchings M1 and M2, and consider the symmetric

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

546 A. Pothen, S. M. Ferdous and F. Manne

difference M1 ⊕M2. The symmetric difference consists of isolated vertices
(an edge belonging to both matchings), and alternating paths and cycles;
here the edges belong alternately to M1 and M2, and thus vertices on such
paths have degree 1 or 2 in the subgraph induced by the two matchings.
Such paths could be used to augment the cardinality of the matching M2 if
M1 has more edges on the path. Alternating cycles have the same number
of edges from M1 and M2, and cannot augment the cardinality of either
matching. Augmenting paths and cycles with respect to weights on edges
will be discussed in Section 3.2.

A maximum cardinality matching in a graph could be obtained by an
algorithm that begins with the empty matching and at each step finds an
augmenting path from an unmatched vertex. Hopcroft and Karp (1973) ob-
tained a O(

√
nm)-time algorithm for finding maximum cardinality match-

ings in bipartite graphs, and this was extended to an algorithm for finding
maximum matchings in non-bipartite graphs by Micali and Vazirani (1980).

Matching algorithms are discussed in many books on graphs and graph
algorithms as well as specialized books on matchings, for example Burkard,
Dell’Amico and Martello (2009), Lovász and Plummer (2009) and Schrijver
(2003).

2.2. Augmenting path-based approximation

We begin by proving a lemma obtained by Hopcroft and Karp (1973).

Lemma 2.1. If all augmenting paths with respect to a matching M in a
graph G have length greater than or equal to 2k − 1, then the matching is
a (k − 1)/k-approximation of a maximum cardinality matching M∗.

Proof. We consider the symmetric difference of a maximum cardinality
matching M∗ and the given matching M . It consists of vertices of degree
zero, one or two, since at most one edge in M∗ and one edge in M can
be incident on any given vertex. Isolated vertices and alternating cycles
have the same number of edges from M and M∗, and the ratio |M |/|M∗|
is one. There are |M∗| − |M | vertex-disjoint M -augmenting paths in the
symmetric difference that account for the differences in cardinalities of the
two matchings. Each augmenting path P has at least k − 1 edges from M
and k edges from M∗, and hence for the path the ratio |M ∩P |/M∗ ∩P | ≥
(k − 1)/k. Since the inequality is true for every augmenting path, the
approximation ratio is |M |/|M∗| ≥ (k − 1)/k.

An important special case of the above lemma is when the augmenting
path has length at least three, that is, we find a maximal matching in G.
Then we have a 1/2-approximation to the maximum cardinality matching.
This observation is used in many practical matching codes as an initializ-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 547

ation step before commencing searches for longer augmenting paths. By
increasing the lengths of the augmenting paths, one obtains an approxim-
ation ratio as close to one as possible; however, with higher augmenting
path lengths, the algorithm more closely resembles the exact algorithm
due to Micali and Vazirani (1980), which requires O(

√
n) phases, where

each phase constructs a maximal, vertex-disjoint set of shortest augmenting
paths. Bast, Mehlhorn, Schäfer and Tamaki (2006) have shown that on an
Erdős–Rényi random graph on n vertices with the probability of an edge
equal to 33/n, G(n, 33/n), the Micali–Vazirani algorithm requires at most
O(log n) phases. A similar result was obtained earlier by Motwani (1994).
Hougardy (2009) showed that an approximation ratio of 4/5 is achievable
in O(m) time for the maximum cardinality matching problem by finding
augmenting paths of length less than or equal to seven.

2.3. Randomized approximation algorithms

We now consider two randomized algorithms that compute approximations
better than 1/2 by first scaling the adjacency matrix of the bipartite graph
to a doubly stochastic matrix, when the graph has the property that every
edge belongs to some maximum cardinality matching. Such graphs are
said to have total support . (Another way of stating this condition is that
the Dulmage–Mendelsohn decomposition of the bipartite graph consists of
subgraphs that have (1) a perfect matching, or (2) a row-perfect matching,
or (3) a column-perfect matching, and no edge joins two distinct components
to each other. The Dulmage–Mendelsohn decomposition is discussed briefly
in Section 3.4.1 and in more detail in Pothen and Fan (1990).) One of the
advantages of these algorithms is that they are highly concurrent, and hence
can be easily implemented on parallel architectures. These algorithms were
designed and implemented by Dufossé, Kaya and Uçar (2015), and we follow
their discussion.

We consider a bipartite graph G = (V1, V2, E) with the same number of
vertices in the two sets V1 and V2, so that its adjacency matrix is a square
matrix with elements belonging to {0, 1}. Every edge joins some vertex
i ∈ V1 with some vertex in j ∈ V2, and the element (i, j) in the adjacency
matrix is then 1; it would be 0 if there is no such edge. The scaling algorithm
was designed by Sinkhorn and Knopp (1967), and it alternates in scaling
the matrix with a diagonal matrix of the reciprocal of the column sums and
another diagonal matrix with the reciprocal of the row sums. When this
process is iterated on a bipartite graph that has total support, the scaled
adjacency matrix converges to a doubly stochastic matrix, i.e. a matrix
whose column sums and row sums are equal to one. The values of the matrix
elements are used in a randomized algorithm to determine the probability
of matching an edge.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

548 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 1 Sinkhorn–Knopp (A, ε)

Input: An n × n adjacency matrix A with total support, and an error
threshold ε.
Output: Row scaling array dr and a column scaling array dc.

1: Initialize dr(i) = 1, dc(i) = 1, for i = 1, . . . , n.
2: Initialize csum(j) =

∑
iAi,j , for j = 1, . . . , n.

3: while maxj |1− csum(j)| > ε do
4: dc(j) = csum(j), for j = 1, . . . , n
5: for i = 1 to n do
6: rsum(i) =

∑
j Ai,j × dc(j)

7: dr(i) = 1/rsum(i)
8: end for
9: for j = 1 to n do

10: csum(j) =
∑

iAi,j × dr(i)
11: dc(j) = 1/csum(j)
12: end for
13: end while
14: return dr, dc

Algorithm 1 describes the procedure to convert an adjacency matrix with
total support to a doubly stochastic matrix. Here ε is an upper bound on the
permissible distance from a column sum of one. Other scaling algorithms
could also be used for this purpose, but the Sinkhorn–Knopp algorithm
is more concurrent. Also Dufossé, Kaya and Uçar (2015) report that five
to ten iterations of this scaling algorithm suffice to compute approximate
matchings.

Algorithm 2 describes how a random matching is computed from the
doubly stochastic matrix S derived from the bipartite graph. The variable
Diag(dr) denotes a diagonal matrix obtained with the elements of the vector
dr on the diagonal. The algorithm uses the matrix element sij to determine
the probability with which a column j is matched to a row i. In this algo-
rithm a row could attempt to match to a column that is already matched
to another row; in this case, one of the rows, say the last, succeeds, and the
other row gets unmatched.

Dufossé et al. (2015) proved that this random matching will match n(1−
1/e) vertices with high probability, where e is the base of natural logarithm,
the Euler number.

Theorem 2.2. Let A be an n × n adjacency matrix corresponding to
a bipartite graph G = (V1, V2, E) with total support. Then the random
matching obtained by Algorithm 2 has expected cardinality n(1 − 1/e) as
n→∞.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 549

Algorithm 2 (1− 1/e)-Approximate Maximum Cardinality Match-
ing (A, ε)

Input: An n× n matrix A with total support.
Output: An array cmatch(.) of the rows matched to columns.

1: (dr, dc) = Sinkhorn–Knopp(A, ε)
2: S = Diag(dr) A Diag(dc)
3: for i = 1 to n do
4: Pick a random column j ∈ adj(i) with probability sij ;
5: cmatch(j) = i
6: end for
7: return cmatch

Proof. The probability that a column j is not matched to any of the rows
in adj(j) is

∏
i∈adj(j)(1 − sij). Let dj denote the degree of column j, i.e.

|adj(j)|. From the inequality that the geometric mean is less than or equal
to the arithmetic mean, we have(∏

i∈adj(j)

(1− sij)

)1/dj

≤
dj −

∑
i∈adj(j) sij

dj
.

Since S is doubly stochastic, the sum on the right-hand side of the inequality
is one; hence after taking the djth power, the right-hand side simplifies to

(1− 1/dj)
dj ≤ (1/e).

Thus the probability that column j is matched is at least 1− 1/e, and the
expected size of the matching is at least n(1− 1/e).

The algorithm we have described is a ((1− 1/e) ≈ 0.632)-approximation
algorithm for maximum cardinality matching on bipartite graphs with total
support. We mention that an online algorithm for maximum cardinality
matching has the same approximation ratio. This latter algorithm was
originally designed by Karp, Vazirani and Vazirani (1990), and a simpler
proof of its correctness and approximation ratio was provided by Birnbaum
and Mathieu (2008).

A better approximation ratio can be obtained from a variant ‘two-sided’
matching algorithm. In order to describe this algorithm, we need to discuss
an algorithm due to Karp and Sipser (1981) for computing a random match-
ing in a graph. The Karp–Sipser algorithm matches a vertex of degree one
to its only neighbour, since it must be matched in any maximum cardinality
matching. Then it deletes the endpoints of the matched edge, and the edges
incident on them from the graph. This may create new vertices of degree
one. The algorithm repeatedly matches vertices of degree one, until none
is left. At this stage, if all vertices have been matched, then the algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

550 A. Pothen, S. M. Ferdous and F. Manne

terminates. If not, it chooses a random vertex in the graph and matches
it to one of its neighbours, and then deletes the endpoints and the edges
incident on them. The algorithm iterates until all vertices are matched.

In the two-sided matching algorithm, vertices in both the vertex sets V1
and V2 choose at random a single neighbour, with the probability given by
the matrix elements in the doubly stochastic matrix S. The subgraph in-
duced by the chosen edges has at most 2n edges. It could be fewer than 2n,
if two vertices belonging to different vertex sets choose each other. Each
connected component of this induced graph can have at most the same num-
ber of edges as the number of vertices, and hence it is a tree or a graph with
one cycle. In this graph, we run the Karp–Sipser algorithm to compute a
matching. Since each connected component is either a tree or a unicyclic
graph, the Karp–Sipser algorithm computes a maximum cardinality match-
ing in the graph. When the initial graph has total support, Dufossé, Kaya
and Uçar (2015) have proved that the two-sided algorithm leads to a 0.866-
approximation for maximum cardinality matching as n → ∞ with high
probability.

3. Edge-weighted matching

In this section we present approximation algorithms for the weighted match-
ing problem on an undirected graph G = (V,E,w) with w : E → R≥0. The
objective is to find a matching M such that the sum of the weights of the
edges in M is as large as possible. We denote such a maximum weight
matching by M∗. The fastest exact algorithm for the weighted matching
problem has run time O(mn+ n2 log n) (Gabow 2018), and the run time of
computing an optimal solution can get prohibitively large even for moderate
sized graphs, it is of interest to investigate fast approximation algorithms.
As we will explain, some of these algorithms also lend themselves well to
parallel execution.

Definitions

Let M be a matching. An alternating path or cycle P is an augmentation
if M ⊕ P is also a matching. The weight of a set of edges S is w(S) =∑

e∈S w(e). The gain of an alternating path or cycle P is g(P) = w(P \
M)− w(P ∩M).

For k ≥ 1, a k-augmentation is an augmentation containing at most k
edges not in M . Figure 3.1(a) shows all possible 1-augmentations. In the
figure a solid line denotes an edge in the current matching and a dotted line
an edge not in the matching. By including the paths in Figure 3.1(b) we
get all possible 2-augmentations that are paths, while Figure 3.1(c) shows
the only cycle possible in a 2-augmentation. Together these graphs show
all possible 2-augmentations. In terms of cardinality a k-augmentation that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 551

a b c
(a)
a b c

(b)
a b c

(c)

Figure 3.1. 2-augmenting paths and cycles.

has l ≤ k unmatched edges contains either l − 1, l or l + 1 matched edges.
The gain of an augmentation is positive if the sum of the weights of the
unmatched edges is greater than the sum of the weights of the matched
edges. (Note that an alternating path with one more matched edge than
unmatched edges could have positive gain, but would not be an augmenting
path for the cardinality of the matching.)

3.1. Approximation lemma

It appears to be well known that if a matching does not admit positive
gain (k − 1)-augmentations then it must have a weight of at least a factor
(k − 1)/k times the weight of a maximum matching w(M∗). Still, to the best
of our knowledge a proof of this does not appear to have been written down
previously. We therefore include a formal proof here. This is a generalization
of the proof given for Theorem 1 in Drake and Hougardy (2003a) which
shows the result for k = 2.

Lemma 3.1. Let M be a matching on G and k an integer greater than 1
such that M does not admit any positive gain (k−1)-augmentations. Then

k − 1

k
w(M∗) ≤ w(M),

where M∗ is a maximum weight matching.

Proof. Let S = M ∩M∗, that is, S consists of the edges of G that are
common to both matchings M and M∗. Further, let R = M \ S and
R∗ = M∗ \ S. Then M = S ∪R and M∗ = S ∪R∗. We will show that

w(R) ≥ k − 1

k
· w(R∗).

The result will then follow since

w(M) = w(S) + w(R) ≥ k − 1

k
· (w(S) + w(R∗)) =

k − 1

k
· w(M∗).

Since R and R∗ are matchings, the subgraph induced by the edges T =
R ∪ R∗ consists of vertices of degree one or two. Thus the edges in T can

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

552 A. Pothen, S. M. Ferdous and F. Manne

be split into a set of even length cycles C and a set of paths P . We show
the result separately for each cycle in C and each path in P .

Consider a cycle Ci ∈ C. If Ci contains at most 2k− 2 edges then by the
assumption of the lemma it follows that

w(Ci ∩M) ≥ w(Ci ∩M∗) ≥
k − 1

k
· w(Ci ∩M∗).

Assume therefore that |Ci| = 2r where 2r ≥ 2k. We denote by mi edges
of Ci that belong to the matching M , and by m∗i edges that belong to
M∗. Let m1,m

∗
1,m2,m

∗
2, . . . ,mk−1,m

∗
k−1,mk be a clockwise path of 2k− 1

consecutive distinct edges from Ci, where each mj ∈ M and each m∗j ∈
M∗. Then by the assumption of the lemma, it follows that

∑k
j=1w(mj) ≥∑k−1

j=1 w(m∗j). There are r distinct starting edges belonging to M for such
a path, each one giving rise to a different inequality. In these inequalities,
every e ∈ Ci ∩M will appear once in every position mj , where 1 ≤ j ≤ k.
Thus each e ∈ Ci ∩M appears in exactly k of these inequalities. Similarly,
each f ∈ Ci ∩M∗ appears in exactly k− 1 inequalities. It follows that if we
sum the left and right sides of the inequalities we get

k · w(Ci ∩M) ≥ (k − 1) · w(Ci ∩M∗),

which leads to the desired inequality for each Ci ∈ C.
Next, consider a path Pi ∈ P . Note first that |Pi| ≥ 2 and thus contains

at least one edge from each of M and M∗. If this were not the case then
either M would contain an augmenting path of length one, or M∗ would
not be maximal. Now append two paths, each containing 2k − 2 dummy
edges of weight 0, to the first and last vertex of Pi respectively. As in the
case for Ci, repeatedly overlay a path m1,m

∗
1,m2,m

∗
2, . . . ,mk−1,m

∗
k−1,mk

of 2k − 1 edges onto Pi such that each e ∈ Pi ∩M appears exactly once for
each mj , where 1 ≤ j ≤ k. Note that dummy vertices may be assigned to
the start and the end of such paths. For each path the inequality

k∑
j=1

w(mj) ≥
k−1∑
j=1

w(m∗j)

still holds true as any assigned dummy edges have weight 0. Since every
e ∈ Pi ∩ M appears in exactly k inequalities, while each f ∈ Pj ∩ M∗
appears in exactly k − 1 inequalities, it follows that by taking the sum of
the inequalities we get

w(Pi ∩M) ≥ k − 1

k
· w(Pi ∩M∗).

Note that the statement of Lemma 3.1 is slightly more restrictive than
that of Lemma 2.1 in that the former lemma does not permit the existence
of any weight-increasing path of length 2k − 1 edges with respect to the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 553

Algorithm 3 Local Greedy(G(V,E,w))

1: M = ∅
2: Set every u ∈ V as unmarked
3: for u ∈ V do
4: if u is unmarked then
5: (u, v) = arg maxx∈N(u){w(u, x) s.t. x is unmarked}
6: Mark u and v
7: M = M ∪ (u, v)
8: end if
9: end for

10: return M

4

7

9

2 6

10

5

5

3d

b

f

a

c

e

Figure 3.2. Example graph for approximate weighted matching.

matching M , where k edges belong to M and k − 1 edges to M∗. Such
an augmentation is not permissible for maximum cardinality matching as it
would reduce the cardinality of the matching M .

3.2. Edge-weighted approximation algorithms

3.2.1. Greedy and Path Growing algorithms

In the following we give an overview of various efforts at designing efficient
linear or close to linear time algorithms for the edge-weighted matching
problem.

Perhaps the simplest matching heuristic is to visit each vertex u once
and unless u is already incident on a matched edge, add an edge (u, v)
of maximum weight to the matching where v is not already incident on a
matched edge. The heuristic is shown in Algorithm 3.

As an example consider the graph in Figure 3.2 consisting of six vertices
and nine edges with integer weights. If the graph is traversed in lexico-
graphical order then Local Greedy will compute the matching M =
{(a, e), (b, d)} of weight 11. Note that the optimal matching is given by
M∗ = {(a, b), (c, d), (e, f)} of weight 20.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

554 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 4 Greedy(G(V,E,w))

1: M = ∅
2: Set every u ∈ V as unmarked
3: for (u, v) ∈ E by non-increasing weight do
4: if u and v are both unmarked then
5: Mark u and v
6: M = M ∪ (u, v)
7: end if
8: end for
9: return M

While this strategy has linear run time in the size of G, it does not offer
any bound on the quality of the obtained solution. To see this consider an
even length (number of edges) path v1, v2, . . . , vk where w(vi, vi+1) = ε if i is
odd, w(vi, vi+1) = δ if i is even, and ε < δ. If the Local Greedy algorithm
processes the vertices in the given order, it will compute a matching with
weight k/2 · ε, while the optimal solution has weight k/2 · δ.

One way to obtain a quality guarantee on the computed matching is to
visit the edges in a predefined order. This gives rise to the classical greedy
matching algorithm as shown in Algorithm 4. Here a matching is computed
by considering each edge e by non-increasing weights. Then if e is not
adjacent to an edge already in the matching it is added to the matching;
otherwise it is discarded.

In the graph in Figure 3.2 Greedy will compute M = {(c, e), (b, d)} of
weight 16. The following result shows that Greedy always gives a solution
of weight at least half of the optimal one.

Lemma 3.2. The Greedy algorithm computes a matching M that is a
1/2-approximation to a maximum weight matching M∗.

Proof. We show that M does not admit a 1-augmentation, and the result
will then follow from Lemma 3.1. For every e ∈ E \ M there must be
either one or two edges in M adjacent to e, otherwise e would have been
added to M . Let e′ ∈ M be an edge adjacent to e of maximum weight. If
w(e) > w(e′) then e would have been considered before any of its adjacent
edges in M and then added to M . It follows that w(e) ≤ w(e′) and that e
cannot be part of a 1-augmentation with respect to M .

It is clear that the Greedy algorithm runs in time O(m log n) due to the
sorting of the edges. However, it is possible to compute a 1/2-approximation
in linear time. One such is the Path Growing algorithm (Drake and
Hougardy 2003b), shown in Algorithm 5. In line 9 of the algorithm, we
concatenate the edge (u, v) to the path P .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 555

Algorithm 5 Path Growing(G(V,E,w))

1: M = ∅
2: Mark each u ∈ V as unvisited
3: for u ∈ V do
4: if u is unvisited then
5: P = {}
6: Mark u as visited
7: while u has unvisited neighbours do
8: v = arg maxx∈N(u){w(u, x), x is unvisited}
9: P = P ◦ (u, v)

10: u = v
11: Mark u as visited
12: end while
13: end if
14: Add the heavier set of the odd or even numbered edges of P to M
15: end for
16: return M

In its original form the algorithm starts at an arbitrary vertex u and
then grows a path P from u by traversing a heaviest edge incident on u
that leads to an unvisited vertex v. The process is then continued from u
and terminates when a vertex is reached such that there is no edge leading
to an unvisited vertex. The result is a path P = e0, e1, . . . , ek. This is
then repeated starting from every unvisited vertex. For each such path one
selects the heavier set of the odd or even numbered edges to add to M .

In the graph in Figure 3.2 starting from vertex a Path Growing would
follow the path a, e, c, d, b, f . The edges of this path would then be divided
into sets {(a, e), (c, d), (b, f)} (odd) of weight 15 and {(c, e), (b, d)} (even) of
weight 16. The final solution consists of the even set.

The run time of Path Growing is clearly O(n + m) as the search for
a path is only started once from each vertex and each edge is only con-
sidered twice (once from each of its endpoints). Note that the resulting
matching might contain 1-augmentations. This is the case for a path of
length four, e0, e1, e2, e3 with edge weights 3, 1, 2 and 3. Then the resulting
matching will consist of the edges e0 and e2; however, e2 and e3 form a
1-augmentation. Thus it is not possible to use Lemma 3.1 to show the per-
formance guarantee. Still, it is not hard to prove that the resulting matching
is a 1/2-approximation.

Lemma 3.3. The Path Growing algorithm computes a matching M
that is a 1/2-approximation to a maximum weight matching M∗.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

556 A. Pothen, S. M. Ferdous and F. Manne

Proof. Let K = P0, P1, . . . , Pk be the non-empty paths generated by Path
Growing. We show that

∑
iw(Pi) ≥ w(M∗). The result then follows since

w(M) ≥
∑
i

1

2
· w(Pi) ≥

1

2
· w(M∗).

Consider an edge (u, v) ∈M∗. Then if (u, v) is not part of some Pi at least
one of u and v must be part of some path Pj , otherwise Path Growing
would have started a new path from either u or v. Assume therefore that
u is part of Pi and that if v is part of Pj then i < j. This ensures that u is
visited before v irrespective of if v is part of some Pj or not. Thus when Path
Growing visits u it is possible to choose the edge (u, v). Since this is not
done it must choose an edge (u, x) to add to Pi such that w(u, x) ≥ w(u, v).
Note that u can only be incident on at most one edge in M∗. It therefore
follows that for every edge e ∈M∗ either e is in some Pi or there is a unique
edge e′ ∈ Pi such that w(e) ≤ w(e′).

The Path Growing algorithm can be improved further without increas-
ing its asymptotic run time, by noting that one can compute an optimal
matching for each Pi instead of just choosing between the even and odd
numbered edges. This is done using dynamic programming as follows. Let
P = e0, e1, . . . , ek be the edges on a selected path and let Opt(i) denote the
weight of an optimal matching on e0, e1, . . . , ei−1. Then the weight of an
optimal matching on P can be computed in linear time using the recursion

Opt(i) = max{Opt(i− 1),Opt(i− 2) + w(ei−1)},

with Opt(0) = 0 and Opt(1) = w(e0). The actual matching can be calcu-
lated by storing a Boolean value for each i to indicate if ei−1 is used in the
computation of Opt(i). We denote this algorithm as Path Growing-DP.

The first linear time 1/2-approximation algorithm for weighted matching
was given by Preis (1999), and it is based on the notion of a dominating
edge. An edge e is dominating if it is heavier than all of its incident edges.
This Locally Dominant Edge algorithm repeatedly locates and adds
dominant edges to the matching. When an edge is added to the matching,
all adjoining edges are removed from the graph before the next dominant
edge is found. The outline of this strategy is shown in Algorithm 6.

To be able to break ties we rank edges of equal weight first by the ID
of the higher-numbered endpoint and then by the lower-numbered one. In
practice we will only be comparing edges of equal weight incident on the
same vertex and thus we always break ties by comparing the ID of the
opposing vertex.

To achieve the linear time run time Algorithm 6 performs a carefully
designed depth-first search (DFS) of G, locating and removing dominating
edges as it progresses. Since the actual algorithm is quite involved, we

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 557

Algorithm 6 Locally Dominant Edge(G(V,E,w))

1: M = ∅
2: Mark each u ∈ V as unvisited
3: while E is not empty do
4: Locate a dominating edge (u, v)
5: M = M ∪ (u, v)
6: Remove all edges incident on u and v from E
7: end while
8: return M

do not list the details. Moreover, a DFS search is inherently linear, thus
prohibiting parallel execution. Hence we present variants of Algorithm 6
that have worse theoretical run times, but which are faster in practice and
that also lend themselves better to parallel execution.

Lemma 3.4. If tie-breaking is done consistently, Algorithm 6 computes
the same matching as the Greedy algorithm.

Proof. Let M and M ′ be the matchings computed by Algorithms 4 and 6,
respectively. Let S = e0, e1, . . . , em−1 be the edges in E by non-increasing
weight. The proof is by induction on the edges in S with the induction
hypothesis being that M and M ′ consists of exactly the same edges from
e0, e1, . . . , ek.

For k = 0 we only consider the heaviest edge in G. Obviously this will be
included in the matchings computed by both algorithms. Assume therefore
that the induction hypothesis holds for all l < k, where k ≥ 1, and consider
edge ek. If ek is not used by Greedy then it must be adjacent to some
edge el where l < k and el ∈M . By assumption el ∈M ′, and since it is not
possible for two adjacent edges to be picked by Algorithm 6, it follows that
ek 6∈M ′.

If ek ∈ M then it cannot be adjacent to any edge el ∈ M where l < k.
The only way that Algorithm 6 can avoid including ek in M ′ is if it is
removed because some adjacent edge el is included in M ′. For el to be
dominant before ek is removed requires that w(el) > w(ek). Since the edges
are considered by non-increasing weight this implies that l < k, and thus
by the induction hypothesis el 6∈ M ′. It follows that ek ∈ M ′ if and only if
ek ∈M .

The simplest algorithm based on discovering dominating edges is the
Local Max algorithm of Birn et al. (2013). The algorithm operates in
stages. At each stage a maximal set of dominating edges are discovered
and added to the matching. These edges, along with their vertices, are
then removed from the graph before the process is repeated. The algorithm

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

558 A. Pothen, S. M. Ferdous and F. Manne

terminates when the graph is empty. It is not hard to see that the run time
of each stage is linear in the size of the remaining graph. It is possible that
only a constant number of vertices and edges are removed at each stage,
thus leading to a worst-case run time of O(nm). However, it can be shown
that if the edge weights are drawn from a uniform random distribution,
then half of the remaining edges will be removed at each iteration (Birn
et al. 2013). Thus in this case the expected number of rounds is O(log n)
and the expected run time is O(m).

3.2.2. The Suitor algorithm

The Suitor algorithm, designed by Manne and Halappanavar (2014), is
another variant of Algorithm 6 that also computes the same matching as
Greedy. The algorithm is based on considering the vertices as players that
are making bids to match with one of their neighbours. The value of a bid
from a vertex u to a vertex v is w(u, v). We denote the highest bid a vertex
u has received as its suitor value, denoted by s(u).

The algorithm works by each vertex u proposing to its neighbour v such
that w(u, v) is maximized under the constraint that v has not already re-
ceived a higher offer than w(u, v). (We say that a vertex v that satisfies this
property is an eligible neighbour of u.) If at a later stage in the algorithm
v receives a better offer, then the bid from u to v is annulled, and u has
to make a new bid to its next heaviest eligible neighbour. The algorithm
terminates when every vertex u is either a suitor of one of its neighbours or
when u has no more vertices to propose to. At this point the edges where
s(u) = v and s(v) = u constitute the matching.

There is no restriction on the order in which the vertices in V are pro-
cessed nor on the order in which rejected suitors are processed. This leaves
considerable freedom in how the algorithm is implemented. Two of the most
natural ways to handle this is to use either a queue or a stack to organize the
vertices that still need to be processed. If a queue is used then all vertices
are initially put in the queue and the next considered vertex is always taken
as the head of the queue. Any vertex that gets dislodged as a suitor because
its chosen neighbour receives a better offer will be added at the end of the
queue. The algorithm terminates when the queue is empty.

When using a stack all vertices are initially put on the stack and the
next vertex to process is taken from the top of the stack. Any vertex that
gets dislodged as a suitor is put on the top of the stack. Note that this
is equivalent to processing each vertex exactly once and then immediately
starting to process any vertex that gets dislodged. This variant of the
Suitor algorithm is shown in Algorithm 7. In the algorithm, if a vertex x
does not have a suitor, i.e. s(x) = NULL, then w(u, s(x)) = 0.

As to correctness consider any initial dominating edge (u, v), for instance
the heaviest edge in E. Then the first time u is processed, the value of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 559

Algorithm 7 Suitor(G(V,E,w))

1: for each u ∈ V do
2: s(u) = NULL
3: end for
4: for each u ∈ V do
5: repeat
6: v = arg maxx∈N(u){w(u, x) : w(u, x) > w(x, s(x))}
7: t = u
8: u = s(v)
9: if v 6= NULL then

10: s(v) = t
11: end if
12: until u == NULL
13: end for
14: return M

s(v) will be set to u. This follows since u has no better alternative and it
cannot be prevented from doing so by any other neighbour x ∈ N(v) as
w(u, v) > w(v, x). Using the same argument it follows that s(u) will be set
to v when v is initially processed. The suitor values of u and v will remain
unchanged throughout the execution for the rest of the algorithm, again
because (u, v) is dominant. It follows that for the final result of the vertices
in V −{u, v}, the net effect is the same as if u and v were removed initially
along with their adjacent edges. The only difference is that some vertices
might become temporary suitors of u or v, but when they are dislodged,
as they will be, they will behave as if u and v had been removed initially.
Thus Algorithm 7 follows the same pattern as Algorithm 6 in computing
the same matching as Greedy.

For the time complexity note first that a vertex can only propose once
to each of its neighbours. Thus it follows that there can at most be 2m
proposals. The time complexity therefore depends on how the next vertex
to propose to is determined. If a linear search is performed each time, the
time complexity is O(n+m∆). If the weights of the edges incident on each
vertex are sorted initially, then the rest of the algorithm runs in O(n+m)
time. The run time will then be dominated by the sorting, which takes time
O(m log ∆). Other strategies include using a partial Quicksort partitioning
to find the heaviest neighbours, and then only when these do not contain
any more potential candidates to match with are more candidates found.

In order to say something about the expected run time of Suitor we note
that there is a strong relationship between computing a greedy matching
and the stable marriage problem (SM).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

560 A. Pothen, S. M. Ferdous and F. Manne

In the SM problem we are given two equal-sized sets L = {l1, l2, . . . , ln}
and R = {r1, r2, . . . , rn}, typically referred to as ‘men’ and ‘women’ respect-
ively. Every man and woman has a total ranking of all the members of the
opposite sex. These give the ‘desirability’ for each participant to match with
a member of the other set. The object is to find a complete matching M
(i.e. a pairing) between the entries in L and R such that no two li ∈ L and
rj ∈ R would both obtain a higher-ranked partner if they were to abandon
their current partner in M and rematch with each other. Any such solution
is stable.

The main differences between computing a matching in a bipartite graph
and an SM instance is that for SM one only considers how attractive two
partners are relative to each other and also that attractiveness might not
be symmetric. Thus one can have cycles such as l1, r1, l2, r2, l1 where each
one prefers to match with the next one in the list. This does not happen in
the matching problem. Moreover, the overall objective is to find any stable
solution, whereas in a matching instance possible solutions can be ranked.

Gale and Shapley (1962) formulated the stable marriage problem and
also proposed the first algorithm for solving it. The algorithm operates
in rounds as follows. In the first round each man in L proposes to his
most preferred woman in R. Each woman will then reject all proposals
she has received in this round except the one that is the highest in her
ranking. In subsequent rounds each man that was rejected in the previous
round will again propose to the woman that he has ranked highest, but now
disregarding any woman that he has already proposed to in previous rounds.
Gale and Shapley showed that this process will terminate with each man
in L being matched to a woman in R and that this solution is stable. The
algorithm also converges to a stable solution even if each participant has
only ranked a subset of the opposing participants. For a recent discussion
of stable matching and generalizations such as stable room-mates, stable
fixtures, etc., see the book by Manlove (2013).

Manne, Naim, Lerring and Halappanavar (2016) show that a greedy
matching on a graph G can be computed by reformulating the problem
as an appropriately constructed instance of SM and then solving this us-
ing the Gale–Shapley algorithm. In fact, the Gale–Shapley algorithm has
a strong resemblance to the Suitor algorithm when using a queue. Simil-
arly, there is a variation of the Gale–Shapley algorithm due to McVitie and
Wilson (1971) corresponding to the Suitor algorithm when using a stack.

Wilson (1972) showed that for any profile of women’s preferences, if the
men’s preferences are random, then the expected sum of men’s rankings of
their mates as assigned by the Gale–Shapley algorithm is bounded above by
nHn, where Hn is the nth harmonic number. Knoblauch (2007) showed that
this is also an approximate lower bound in the sense that the ratio of the
expected sum of men’s rankings of their assigned mates and (n+ 1)Hn − n

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 561

has limit 1 as n→∞. Thus if the men’s preferences are random then this
sum is Θ(n lnn) for large n. However, it is not hard to design instances
where this sum is Θ(n2). One such case is when the men have identical
preferences. These results carry over to the Suitor algorithm in that for a
graph with random weights the expected number of proposals made is also
bounded by O(n lnn), and if the graph is sufficiently dense by Θ(n lnn).

The depth of a parallel algorithm is the length of the critical path in the
algorithm, and the work in the algorithm is the total number of operations
performed by the algorithm. Blelloch, Fineman and Shun (2012) have shown
that a maximal matching in a graph can be computed with O(m) work and
O(logm log ∆) depth. Their proof technique was adapted by Khan, Pothen
and Ferdous (2018b) to show that the parallel Suitor algorithm has O(m)
work and O(logm log ∆) depth when the edge weights are chosen uniformly
at random.

Among the algorithms presented thus far, experimental evaluations have
shown that the highest-weight matching is obtained by Path Growing-
DP. This is due to the use of dynamic programming to select an optimal
solution on the discovered paths. The Global Paths Algorithm by
Maue and Sanders (2007) further expands this idea, by trying to get a
heavier set of edges on which to perform the dynamic programming. The
algorithm starts by sorting the edges and then considers each edge by order
of non-increasing weight, similar to the Greedy algorithm. An edge is kept
for further consideration in a set S if it either connects at most two paths
already contained in S, or if it completes a cycle of even length contained
in S. The algorithm then uses dynamic programming on the paths and
cycles in S to obtain the final matching. Even though the Global Paths
Algorithm in most instances gives higher weight matchings compared to
Path Growing-DP, it does not improve the approximation ratio beyond
half.

The idea of computing optimal matchings on restricted subgraphs was
also used by Manne and Halappanavar (2014) in the M1M2 algorithm.
This algorithm is based on the observation that the union of the edges from
two matchings always consists of paths and even length cycles. The M1M2
algorithm first computes a greedy matching M1 on a graph G(V,E,w). It
then computes a second greedy matching M2 on G(V,E \M1, w) before per-
forming dynamic programming on M1 ∪M2 in the same way as was done
in Global Paths Algorithm. This gave results of a similar quality to
Global Paths Algorithm. Further use of this idea was shown in Idel-
berger and Manne (2014) where the dynamic programming was expanded to
maximum weight spanning trees, while also performing mergers of multiple
matchings following a tree-like structure.

While the algorithms presented thus far tend to perform quite well in
practice, often producing optimal or close to optimal solutions, they all

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

562 A. Pothen, S. M. Ferdous and F. Manne

have in common that they cannot guarantee a performance ratio higher
than 1/2. To do so requires that one considers augmentations containing
more than one unmatched edge.

Drake and Hougardy (2005) presented the first such algorithm which com-
putes a (2/3− ε)-approximation in time O(mε−1). The algorithm is based
on increasing the weight of a maximal matching by repeatedly performing
2-augmentations. This algorithm was subsequently simplified by Pettie and
Sanders (2004) who also improved the run time to m log ε−1. Their algo-
rithm is based on finding the best 2-augmentation centred in a node u. For
a matching M and 2-augmenting path P , a centre node u ∈ P has the
property that each edge (x, y) ∈ P \M is either incident on u or on the
matching partner v of u. For a particular vertex u one can then find the
best 2-augmenting path centred in u in time O(deg(u) + deg(v)).

Pettie and Sanders presented both a simple randomized algorithm RAMA
and a slightly more involved deterministic one. In RAMA one picks a ran-
dom vertex u and then finds the best 2-augmentation centred at v and
augments if this gives a positive gain. By repeating this (1/3) log ε−1 times
the algorithm has an expected run time of O(m log ε−1) and an expected
performance ratio of 2/3− ε (Pettie and Sanders 2004). The algorithm can
either start with an empty matching or from an existing one. A variant
of RAMA, named ROMA was later determined to be more effective in
practice (Maue and Sanders 2007). In ROMA the algorithm iterates mul-
tiple times through all vertices in a random order and performs the same
augmentation step as in RAMA. This algorithm computed a higher weight
matching when initialized with a matching given by Global Paths Algo-
rithm, albeit at the cost of higher run times. Subsequent developments have
given (3/4−ε)-approximation algorithms running in time O(m log n log ε−1)
(Duan and Pettie 2010, Hanke and Hougardy 2010). However, these have
not been tested in practice.

Finally, Duan and Pettie (2014) presented a (1− ε)-approximation algo-
rithm that runs in time O(mε−1 log ε−1). This algorithm employs the scaling
approach to computing weighted matchings, with the subproblem at each
scale solved by a primal–dual linear programming formulation of matching.
The feasibility and complementary slackness conditions are enforced ap-
proximately, with the violation of these conditions dynamically dependent
on the scale of the computation.

3.3. Experiments on edge-weighted matching algorithms

The data set consists of ten graphs taken from the SuiteSparse collection
(Davis and Hu 2011). Structural properties of these graphs are shown in
Table 3.1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 563

Table 3.1. Structural properties of graphs used for weighted matching, sorted in
increasing order of edges.

Problems Vertices Edges

af shell10 1 508 065 25 582 130
Serena 1 391 349 31 570 176
audikw 1 943 695 38 354 076
channel-500x100x100-b050 4 802 000 42 681 372
delaunay n24 16 777 216 50 331 601
europe osm 50 912 018 54 054 660
Flan 1565 1 564 794 57 920 625
Cube Coup dt6 2 164 760 62 520 692
kron g500-logn21 2 097 152 91 040 932
nlpkkt200 16 240 000 215 992 816

3.3.1. Comparison of exact and approximation algorithms

We begin by comparing the performance of exact algorithms for maximum
edge-weighted matching with several approximation algorithms. We re-
port on the exact algorithm implemented in LEDA (Mehlhorn and Näher
1999). We report on three variant algorithms: LEDA1 uses no initializa-
tion, LEDA2 employs a greedy 1/2-approximation matching, and LEDA3
uses a fractional matching initialization. The latter initialization computes
a fractional {0, 1/2, 1} solution to a linear programming formulation of the
edge-weighted matching problem; the solution is computed by a combin-
atorial algorithm, not an LP solver. The fractional solution is then roun-
ded to obtain an initial matching. The (2/3 − ε)-approximation algorithm
ROMA is initialized with the Global Paths Algorithm and the Suitor
algorithms. We report results for the RAMA algorithm without any initial-
ization since the initialized versions computed lower weights than the cor-
responding variants of the ROMA algorithm; however, it is faster than the
latter. The Duan and Pettie (1− ε)-approximation algorithm for weighted
matching was implemented by Al-Herz and Pothen (2019), and we report
results for it as well.

For the experiments we used an Intel Xeon E5-2660 processor-based sys-
tem (part of the Purdue University Community Cluster), called Rice.1 The
machine consists of two processors, each with ten cores running at 2.6 GHz

1 https://www.rcac.purdue.edu/compute/rice/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

564 A. Pothen, S. M. Ferdous and F. Manne

(20 cores in total) with 25 MB unified L3 cache and 64 GB of memory. The
operating system is Red Hat Enterprise Linux release 6.9. All code was de-
veloped using C++ and compiled using the g++ compiler (version: 4.4.7)
using the –O3 flag.

Run times and relative performances are reported in Table 3.2. Note that
LEDA1 does not terminate on the last problem in the set, whereas LEDA2
and LEDA3 do. For the other nine problems, there is not much difference
between the uninitialized version and the greedy initialization, whereas the
fractional matching initialization is more effective, about four times faster
than the uninitialized version. The (2/3 − ε)-algorithms and the (1 − ε)-
approximation algorithms are 20–30 times faster than LEDA1, while the
Suitor algorithm is about 1700 times faster, in geometric mean. For the
last problem, we use LEDA2 as the baseline algorithm, the Suitor algo-
rithm is 2000 times faster than LEDA2, while for the other approximation
algorithms the factor is in the range 35–50.

Now we compare the weights computed by the algorithms. All the ex-
act algorithmic variants compute the same weight, and this is reported in
Table 3.3. For the approximation algorithms we report the gap to optim-
ality expressed as a percentage. This value is computed as the ratio of the
difference in weight between the maximum and approximate weights and
the maximum weight. The Suitor algorithm computes more than 94% of
the maximum weight in geometric mean, with the lowest value being 78%.
ROMA obtains a lower gap than RAMA, and the ROMA algorithm initial-
ized with the Suitor algorithm computes the highest weight among the
(2/3− ε)-approximation algorithms, but the (1− ε)-algorithm with ε = 1/4
lowers the gap further to about 1.6%. Note that all these algorithms obtain
much better weights than their worst-case approximation ratios.

Finally we compare the cardinalities of the maximum weight matching
and approximate matchings in Table 3.4. Note that the cardinality of the
exact algorithm is not necessarily equal to that of the maximum cardinality
matching. The gap in cardinality is computed analogously to the gap in
weights. The cardinality of the approximation algorithms is lower than that
of the exact algorithm. The gap in cardinalities is about 3% for Suitor,
while it is less than 0.5% for the other approximation algorithms.

The relative performance of these algorithms has a strong dependence on
the weights. When we use these algorithms to solve vertex-weighted match-
ings (with vertex weights chosen uniformly at random, and edge weights
computed by adding the vertex weights on the endpoints of an edge), there
are problems for which the exact algorithms do not terminate in hundreds
of hours. For these problems the (2/3 − ε)-algorithms tend to obtain bet-
ter weights than the (1 − ε)-approximation algorithm. We discuss these in
Section 5 on vertex-weighted matchings.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

A
p
p
r
o
x
im

a
t
io
n
a
l
g
o
r
it
h
m
s
in

C
S
C

565

Table 3.2. Comparing the run times of exact and approximation algorithms for maximum edge-weighted matching. Edge
weights are from a uniform random distribution in the range [1 1000]. Run times of LEDA without any initialization are
reported in LEDA1, and for all other algorithms the ratios of the run time of LEDA1 to the other algorithm are presented.
For the last problem in the set, LEDA1 did not complete in four hours, and LEDA with greedy initialization (LEDA2) is the
baseline. LEDA3 is the LEDA matching algorithm with fractional matching initialization.

Time (s) Relative performance

︷ ︸︸ ︷
Exact Exact Exact 1− ε RAMA ROMA Suitor, Suitor

ROMA

LEDA1 LEDA2 LEDA3 Scaling 2/3− ε

ε = 1/4 ε = 1/3 ε = 0.01

af shell10 310 1.10 1.70 18.00 24.00 24 23.00 23 1200
Serena 610 1.10 2.10 49.00 63.00 37 36.00 35 1400
audikw 1 990 1.00 2.50 120.00 150.00 62 62.00 58 2300
channel-500x100x100-b050 610 1.30 2.80 13.00 14.00 17 14.00 15 920
delaunay n24 720 1.60 4.40 2.60 2.90 12 7.90 11 610
europe osm 3200 3.30 12.00 4.80 6.00 31 9.20 26 1600
Flan 1565 940 1.10 4.80 49.00 80.00 35 33.00 32 1500
Cube Coup dt6 1400 1.20 4.70 71.00 94.00 43 38.00 38 1800
kron g500-logn21 3500 2.00 15.00 41.00 51.00 64 36.00 53 3800

Geometric mean 1.40 4.30 24 30 32 24 29 1500

Time (s) Relative performance

nlpkkt200 7100 2.30 44 50 39 40 36 1700

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

56
6

A
.
P
o
t
h
e
n
,
S
.
M
.
F
e
r
d
o
u
s
a
n
d

F
.
M
a
n
n
e

Table 3.3. Comparison of weights obtained by the exact and approximation algorithms for maximum edge-weighted matching.
For each algorithm, we report the difference between one and the ratio of the weight computed by the approximation algorithm
and the maximum weight obtained by the exact algorithm, expressed as a percentage.

Weight Gap to optimal weight (%)

︷ ︸︸ ︷
Exact 1− ε RAMA ROMA Suitor, Suitor

ROMA

LEDA Scaling 2/3− ε

ε = 1/4 ε = 1/3 ε = 0.01

af shell10 7.20E+08 1.30 1.70 3.90 3.60 2.00 5.10
Serena 6.70E+08 1.20 1.70 4.20 3.90 2.10 4.90
audikw 1 4.60E+08 1.40 1.80 3.70 3.50 2.00 4.70
channel-500x100x100-b050 2.20E+09 1.80 2.40 4.80 4.30 2.70 6.90
delaunay n24 6.40E+09 2.60 3.60 3.00 2.30 2.10 7.90
europe osm 1.50E+10 1.30 1.70 1.50 0.50 0.53 3.70
Flan 1565 7.70E+08 1.10 1.40 3.50 3.20 1.60 3.60
Cube Coup dt6 1.10E+09 1.10 1.40 3.80 3.50 1.80 3.90
kron g500-logn21 3.50E+08 4.70 6.10 2.80 1.80 1.70 22.00
nlpkkt200 7.60E+09 1.40 1.90 4.10 3.60 2.10 5.70

Geometric mean 1.60 2.10 3.40 2.70 1.70 5.80

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

A
p
p
r
o
x
im

a
t
io
n
a
l
g
o
r
it
h
m
s
in

C
S
C

567

Table 3.4. Comparison of cardinalities obtained by the maximum edge-weighted matching algorithm and the approximation
algorithms. Note that this is not the cardinality obtained by a maximum cardinality matching. For each algorithm, we report
the difference between one and the ratio of the cardinality of the matching computed by the approximation algorithm and the
cardinality of the maximum edge-weighted matching, expressed as a percentage.

Cardinality Gap to cardinality of maximum weight matching (%)

︷ ︸︸ ︷
Exact 1− ε RAMA ROMA Suitor, Suitor

ROMA

LEDA Scaling 2/3− ε

ε = 1/4 ε = 1/3 ε = 0.01

af shell10 754 032 0.16 0.24 0.18 0.16 0.19 1.80
Serena 695 674 0.08 0.14 0.09 0.08 0.09 1.80
audikw 1 471 847 0.01 0.03 0.04 0.04 0.04 1.60
channel-500x100x100-b050 2 400 980 0.76 0.99 0.48 0.42 0.41 3.60
delaunay n24 8 217 157 4.10 4.60 2.60 2.00 2.20 8.20
europe osm 22 996 323 3.50 3.80 1.90 0.83 1.00 5.90
Flan 1565 782 397 0.01 0.02 0.03 0.03 0.03 1.00
Cube Coup dt6 1 082 380 0.02 0.03 0.04 0.04 0.04 1.20
kron g500-logn21 442 107 8.30 9.60 4.20 3.20 3.20 24.00
nlpkkt200 8 000 000 0.33 0.47 0.14 0.13 0.16 2.80

Geometric mean 0.25 0.36 0.26 0.21 0.23 3.10

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

568 A. Pothen, S. M. Ferdous and F. Manne

1 2 3 4 5 6 7 8 9 10

Graphs

10
-1

10
0

10
1

10
2

R
u
n
n
in

g
 t
im

e

Greedy Suitor PGA'

M1M2 GPA Sort

Figure 3.3. Run times for five 1/2-approximation algorithms.

3.3.2. Comprehensive comparison of approximation algorithms

Now we compare the various approximation algorithms using original edge
weights from the graphs rather than the random integer weights used in the
previous experiments. We first compare the 1/2-approximation algorithms.
Figure 3.3 shows the run time of the Global Paths Algorithm (GPA),
and the Greedy, Suitor, Path Growing-DP and M1M2 algorithms for
the ten graphs. For Greedy and Path Growing-DP the time to sort the
edges is shown separately. This is done using the standard qsort routine in
C. Thus for an application where the edges are not already sorted, then this
time must be added to get the total run time.

For these experiments we used a Dell computer running GNU/Linux
equipped with four 10 core 2.00 GHz Intel Xeon E7-4850 processors with a
total of 128 GB memory. Algorithms were implemented in C using OpenMP
for parallelization and compiled with gcc using the –O3 flag.

As can be seen from the figure, for all but one graph the time to sort
dominates the time taken by all other algorithms, in many cases by as much
as an order of magnitude. When one excludes the time to sort, Greedy is
the fastest algorithm followed by Suitor and Path Growing-DP. These
again outperform M1M2 and the Global Paths Algorithm. If one
includes the time to sort the edges then Suitor outperforms Greedy while
M1M2 outperforms the Global Paths Algorithm.

To measure the quality of the solutions given by these algorithms we
compute the average performance ratio for each algorithm compared to the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 569

best algorithm for each graph. This shows that Greedy, Path Growing-
DP, M1M2 and Path Growing algorithms have an average performance
ratio of 2.44%, 1.67%, 0.21% and 0.04%, respectively, higher than the best
algorithm for each graph. Thus it follows that the more time-consuming
algorithms also gives better results.

Next, we compare the use of either RAMA or ROMA for post-processing
a solution. We first note that in terms of run time RAMA is about 10%
slower than ROMA. Each application of ROMA is on average 4.9 times
slower than the corresponding edge sorting. Thus there is a fairly large cost
for using this post-processing. As there is also a slight advantage of using
ROMA over RAMA in terms of quality of solution, we only present results
from using ROMA.

How much improvement ROMA gives depends on the starting configur-
ation. The average improvement for using Suitor followed by ROMA was
4.9% while both M1M2 and Global Paths Algorithm were improved
by 2.6%. In terms of absolute quality of the final solution Suitor followed
by ROMA always gave the best solution. On average M1M2 was 0.19%
worse while Global Paths Algorithm was 2.11%. Thus, in terms of
both run time and quality, the preferred strategy is to use Suitor followed
by ROMA.

In Figure 3.4 we show the speedup curves for Suitor, M1M2 and Local
Max algorithms when run on the graph nlpkkt200. For both Suitor and
M1M2 the speedups increase almost linearly as long as there are available
threads. Although the CPUs can perform hyper-threading, this does not
give any additional speedup when using 50 threads. The speedup for Local
Max drops off earlier than Suitor. The sequential run time for Local
Max is about 70% higher than that of Suitor. Combined with the lower
speedup it follows that the parallel run time of Local Max is even worse.

Approximation algorithms for edge-weighted matchings have been imple-
mented on GPUs by several authors. We list some of these papers: Cohen
and Castonguay (2012), Fagginger Auer and Bisseling (2012), Halappanavar
et al. (2012) and Naim et al. (2015).

3.4. Applications of matchings

3.4.1. Maximum cardinality matching

Maximum cardinality matchings in bipartite graphs have been employed in
sparse matrix algorithms for several purposes. A maximum matching can
be used to permute a sparse matrix to place the largest number of non-zeros
on the diagonal. This number is the structural rank of the matrix, which is
an upper bound on the numerical rank.

In the following we say that a matrix has a row-perfect matching to mean
that its bipartite graph consisting of row vertices and column vertices has a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

570 A. Pothen, S. M. Ferdous and F. Manne

0 5 10 15 20 25 30 35 40 45 50

Threads

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

Suitor

M1M2

LocalMax

Figure 3.4. Speedup for Suitor, M1M2 and Local
Max algorithms on the nlpkkt200 graph.

matching in which all rows are matched. The concept of a column perfect
matching is similar, and a perfect matching is both row-perfect and column-
perfect.

A maximum matching can be used to compute the block (lower) triangular
form (BTF) of a sparse matrix, which has the block matrix structure

A =

A11 A12 A13

0 A22 A23

0 0 A33

,
where A11 has fewer rows than columns and has a row-perfect matching, A22

is a square matrix with a perfect matching, and A33 has fewer columns than
rows and has a column-perfect matching. The submatrices A12, A13 and
A23 could be zero. The submatrix A11 has the strong Hall property with
respect to its rows (Coleman, Edenbrandt and Gilbert 1986, Pothen and
Fan 1990). This property states that every set of k rows has non-zeros in at
least (k+1) columns. The submatrix A33 has the strong Hall property with
respect to its columns, and A22 has the strong Hall property with respect
to both rows and columns (in this last case k < n, where n is the dimension
of A22).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 571

The BTF of a sparse matrix is derived from the Dulmage–Mendelsohn de-
composition of the bipartite graph of the matrix, which could be computed
from a maximum matching in the graph. The subgraph corresponding to
A11 is obtained by following all alternating paths from unmatched columns,
and including all rows and columns reached in the subgraph. The subgraph
corresponding to A33 is obtained by following all alternating paths from un-
matched rows, and including all rows and columns reached. The submatrix
corresponding to A22 consists of all rows and columns not reached thus far,
and they must be matched to each other since all unmatched columns and
rows have been accounted for. (There is a finer decomposition for A22 which
we do not describe here.) The decomposition is unique for a bipartite graph
and is independent of the specific maximum matching used to induce it.
Further details may be found in Pothen and Fan (1990).

The BTF can be used to reduce the work in solving sparse linear systems
of equations by a factorization-based algorithm, since only the diagonal
blocks in the BTF need to be factored. The BTF has been used to solve
Kirchoff’s equations in circuit design within the Xyce circuit simulation
code (Keiter et al. 2011), and it is also used to solve nonlinear systems of
equations in systems modelling software such as Modelica (Fritzson 2014).
The strong Hall matrices in the BTF could be used to correctly predict the
non-zero structures of orthogonal-triangular (QR) factors of sparse matrices
(Coleman et al. 1986, Pothen 1993). Matchings have also been used to com-
pute sparse bases for the null space of sparse, under-determined matrices,
as also sparse bases for the column space of such matrices (Coleman and
Pothen 1987, Pinar, Chow and Pothen 2006).

In applications such as the BTF, one needs to compute a maximum car-
dinality matching in bipartite graphs, and an approximation will not suffice.
Duff, Kaya and Uçar (2011) have addressed the several choices one needs to
obtain an efficient practical algorithm. The Karp–Sipser algorithm is used
as an initialization, and then there are choices to be made on if the augment-
ing path searches should use breadth-first search (BFS) or depth-first search
(DFS) or some combination of them. It is also clear from their work and
other authors, that the theoretically less efficient O(nm) time algorithms are
faster than the Hopcroft–Karp algorithm with O(n1/2m) time complexity.
Azad, Buluç and Pothen (2017) have designed efficient shared-memory par-
allel algorithms for this problem. A distributed-memory parallel algorithm
scaling to hundred-thousand cores has been implemented using sparse mat-
rix vector products using the Graph-BLAS operations by Azad and Buluç
(2016).

3.4.2. Maximum edge-weighted matchings

An important application we consider is sparse Gaussian elimination (LU
factorization). Here, permuting the sparse matrix to have large elements

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

572 A. Pothen, S. M. Ferdous and F. Manne

on the diagonal before the numerical factorization makes it less likely that
numerical pivoting (row permutations) will be required during the compu-
tation to prevent large element growth in the factors. Olschowka and Neu-
maier (1996) described a pivoting strategy using a primal–dual algorithm
for the assignment problem, which was then adapted and implemented for
sparse bipartite graphs by Duff and Koster (2001). A perfect matching that
has the maximum product of matched elements is computed in this con-
text, and the resulting code, MC64, is widely used. Hogg and Scott (2013)
discuss several pivoting strategies, including matching-based orderings, to
solve symmetric, indefinite systems of equations.

As parallel computers are able to solve systems of linear equations with
millions of rows and columns, one challenge that has remained here is that
the primal–dual algorithm used to compute perfect matchings does not have
much concurrency. Hogg and Scott (2015) have employed the auction algo-
rithm on shared-memory machines to compute the matching in parallel,
but scaling to the large numbers of cores on distributed-memory machines
remained an open problem. This raised the possibility that approximation
algorithms for matching could be employed in this context. In recent work
Azad et al. (2018) have described an approach that scales to 17 000 cores,
and we consider this next.

Azad et al. (2018) first compute a perfect matching in the bipartite graph
and then seek to increase its weight. (A perfect matching must exist if the
matrix is non-singular.) The perfect matching is computed by a distributed-
memory parallel algorithm that recasts the problem in terms of matrix–
vector products in a suitable semi-ring using the Graph-BLAS operations
(Azad and Buluç 2016). The increase in weight is accomplished by means of
the (2/3− ε)-approximation algorithm of Pettie and Sanders (2004), which
can be simplified here because the graph is bipartite and the matching is
perfect. Hence they search for weight-increasing cycles with four edges (see
Figure 3.1), finding for each vertex a cycle that leads to the largest increase
in matching weight. From the set of cycles obtained, a maximal set of vertex-
disjoint cycles is chosen using a greedy algorithm, and the matching weight
is increased without affecting the cardinality of the perfect matching. The
approximation guarantee of this algorithm is (2/3 − ε) and it is computed
in O(m log ε−1) time.

In a distributed-memory parallel implementation, it is not easy to find a
maximal set of vertex-disjoint cycles without extensive communication, and
hence these authors instead use only local comparisons to obtain a heavy
set of vertex-disjoint cycles. Thus the parallel algorithm does not have the
approximation guarantee, but it computes a heavy-weight matching that
performs well in practice; it runs in O((m/p)(1 + β) + αp) time, where p
is the number of processors, α is the latency and β is the inverse band-
width. The authors report results for the algorithm on distributed-memory

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 573

machines with 17 000 cores. Their code has been incorporated into the dis-
tributed-memory SuperLU solver for sparse, unsymmetric, linear systems of
equations (Li and Demmel 2003). Additional details on the applications of
matchings in sparse matrix algorithms is provided in Duff and Uçar (2012).

Exact algorithms for maximum cardinality matchings and maximum edge-
weighted matchings in bipartite and non-bipartite graphs are available in
the LEDA library (Mehlhorn and Näher 1999). We compare the perform-
ance of approximation algorithms for vertex- and edge-weighted matchings
with the LEDA codes in Section 5.

3.5. Matching software

In Table 3.5 we tabulate software libraries available for several matching
problems. Software for b-matching, edge cover and b-edge cover will be
discussed in their respective sections. An earlier discussion of matching
algorithms and software is provided by Burkard et al. (2009).

The MC64 code in the Harwell Subroutine Library (HSL) computes a
maximum product edge-weighted perfect matching in a bipartite graph in
order to place large elements on the diagonal of a sparse, square matrix
(Duff and Koster 2001). The primal–dual Hungarian algorithm is employed
with a logarithmic transformation of the weights to compute a maximum
product matching. Code for computing a maximum sum edge-weighted
perfect matching is also included. This code is widely used in the pre-
processing step in solving sparse systems of linear equations.

LEDA (Mehlhorn and Näher 1999) has codes for computing maximum
edge-weighted matchings in both bipartite graphs and non-bipartite graphs.
In our experience, this code is the fastest of the exact matching codes avail-
able for this problem. The algorithm uses a fractional matching initializ-
ation for non-bipartite graphs, which speeds it up over a greedy initializa-
tion. It is commercial software. The LEMON library (Dezső, Jüttner and
Kovács 2011) contains an exact maximum edge-weighted matching code.
BLOSSOM V is another code for minimum weight perfect matching in non-
bipartite graphs by Kolmogorov (2009).

The colleagues and students of the first author have created a software lib-
rary called Matchbox, which contains a number of exact and approximation
algorithms for several variants of the matching problem. Included are exact
algorithms for maximum cardinality matching in bipartite and non-bipartite
graphs, and a 1/2-approximation algorithm for bipartite graphs. For edge-
weighted matching, it has exact algorithms for maximum edge weight, per-
fect matching with maximum edge weight, and maximum weight semi-
perfect matching, all for bipartite graphs. It also has a 1/2-approximate
greedy algorithm for both bipartite and non-bipartite graphs. For vertex-
weighted matchings, it has exact algorithms for both bipartite and non-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

57
4

A
.
P
o
t
h
e
n
,
S
.
M
.
F
e
r
d
o
u
s
a
n
d

F
.
M
a
n
n
e

Table 3.5. Matching software libraries.

Library/Code URL Algorithms included

HSL/MC64 http://www.hsl.rl.ac.uk/catalogue/mc64.html Max. product (and sum) edge-weighted perfect matching in
bipartite graphs

Blossom V http://pub.ist.ac.at/˜vnk/software.html Min. edge-weighted perfect matching

LEDA http://www.algorithmic-solutions.com/leda Max. edge-weighted matching in bipartite and general graphs

LEMON http://lemon.cs.elte.hu Max. edge-weighted matching in general graphs

Matchbox https://github.com/CSCsw/matchbox Cardinality
Max. matching in general graphs;
1/2-approximate matching in bipartite graphs

Edge weight
Max. edge weight, perfect matching with max. edge weight,
and max. edge-weighted semi-perfect matching, all in bipart-
ite graphs;
1/2-approximate edge-weighted matching (greedy) for gen-
eral graphs

Vertex weight
Max. matching for general graphs;
2/3-, (1 − ε)- and variants of 1/2-approximation algorithms
(Greedy, Locally Dominant Edge, Path Growing-DP,
Suitor) for max. matching in general graphs

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

A
p
p
r
o
x
im

a
t
io
n
a
l
g
o
r
it
h
m
s
in

C
S
C

575

Table 3.5 continued.

Library/Code URL Algorithms included

Suitor http://www.ii.uib.no/˜fredrikm/matching/ Several 1/2-approximation edge-weighted matching
algorithms including Suitor

Matchmaker http://people.sabanciuniv.edu/kaya/software.html Ten variant bipartite max. cardinality matching algorithms

Matchmaker2 http://tda.gatech.edu/software/matchmaker2/ GPU code for bipartite max. cardinality matching

MS-BFS-GRAFT https://bitbucket.org/azadcse/ms-bfs-graft Multi-threaded code for 1/2-approximate bipartite max.
cardinality matching

CombBLAS 2.0 https://bitbucket.org/berkeleylab/combinatorial-blas-2.0,
directory CombBLAS/Applications/BipartiteMatchings/

Distributed-memory algorithms for bipartite matching (max.
cardinality, 1/2-approximate cardinality, heavy-weight per-
fect matching) via matrix vector multiplication in a semi-ring

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

576 A. Pothen, S. M. Ferdous and F. Manne

bipartite graphs. The collection of approximation algorithms includes 2/3-,
(1 − ε)- and several variants of 1/2-approximation algorithms (Greedy,
Locally Dominant Edge, Path Growing-DP, Suitor), for both bi-
partite and non-bipartite graphs. (The bipartite graph algorithms for vertex-
weighted matching make use of the Mendelsohn–Dulmage theorem to make
them more efficient.)

Codes for several 1/2-approximation algorithms for edge-weighted match-
ing, including the Suitor algorithm, will be available from the third au-
thor’s website. Included are Suitor, Local Max, Locally Domin-
ant Edge, Path Growing, Path Growing-DP, Global Paths Algo-
rithm and M1M2 algorithms. Multi-threaded parallel implementations of
some of these algorithms are also included.

Implementations of ten variants of exact algorithms for maximum car-
dinality matching in bipartite graphs are provided by Kamer Kaya in a
code called Matchmaker. The algorithms are based on breadth-first search,
depth-first search and push–relabel techniques. MATLAB interfaces to the
codes are also included. A GPU code for this problem, Matchmaker2, is
also available (Deveci, Kaya, Uçar and Çatalyürek 2013).

A parallel multi-threaded code for computing 1/2-approximate maximum
cardinality matchings in bipartite graphs has been provided by Azad. Dis-
tributed-memory parallel codes for exact maximum cardinality matching,
1/2-approximate cardinality matching and heavy-weight perfect matching,
all in bipartite graphs, are also available. These codes employ Combinatorial
BLAS (matrix operations in a suitably defined semi-ring) (Buluç and Gilbert
2011) to compute the matchings.

4. The b-matching problem

4.1. Background on b-matching

We turn to a generalization of the matching problem. Given a graph G =
(V,E) and a function b(.) that maps each vertex to a natural number, a
b-matching is a subset of edges M such that at most b(v) edges in M are
incident on each vertex v. We assume that b(v) ≤ deg (v) for all v. If b(v)
is identically equal to one, then we have the matching problem. If the edges
have weights w, then the weight of a b-matching is the sum of the weights
of the matched edges, and we seek to compute a b-matching of maximum
weight. We denote b(V) =

∑
v∈V b(v) and β = maxv∈V b(v).

An exact algorithm for a maximum weight b-matching was first designed
by Edmonds (1965), and Pulleyblank (1973) later gave a pseudo-polynomial
time algorithm with complexity O(mnb(V)). Anstee (1987) proposed a
three-stage algorithm where the b-matching problem is solved by trans-
forming it to a Hitchcock transportation problem, rounding the solution to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 577

integer values, and finally invoking Pulleyblank’s algorithm. Derigs and
Metz (1986) and Miller and Pekny (1995) improved the Anstee algorithm
further. Padberg and Rao (1982) developed another algorithm using the
branch and cut approach, and Grötschel and Holland (1985) solved the
problem using the cutting plane technique. A survey of exact algorithms
for b-matchings was provided by Müller-Hannemann and Schwartz (2000).
More recently, Huang and Jebara (2011) proposed an exact b-matching algo-
rithm based on belief propagation. The algorithm assumes that the solution
is unique, and otherwise it does not guarantee convergence.

We now describe work on approximate b-matching. Mestre (2006) showed
that a b-matching is a relaxation of a matroid called a 2-extendible system,
and hence that the greedy algorithm gives a 1/2-approximation for a max-
imum weight b-matching. We describe his proof in the next subsection.
Mestre also generalized the path-growing algorithm of Drake and Hougardy
(2003b) to obtain an O(βm) time 1/2-approximation algorithm. These algo-
rithms are slower in practice than a serial b-Suitor algorithm that general-
izes the Suitor algorithm (Khan et al. 2016b). Since the Path Growing
algorithm is inherently sequential, it is not a good candidate for paralleliz-
ation. Additionally, Mestre (2006) generalized a randomized algorithm for
matching to obtain a (2/3− ε)-approximation algorithm with expected run
time O(βm log(1/ε)). De Francisci Morales, Gionis and Sozio (2011) have
adapted the Greedy algorithm and an integer linear program (ILP) based
algorithm to the MapReduce environment to compute b-matchings in bi-
partite graphs. b-matching algorithms have also been developed using linear
programming (Koufogiannakis and Young 2011, Manshadi et al. 2013), but
these methods are orders of magnitude slower than the b-Suitor algorithm.
Georgiadis and Papatriantafilou (2013) have developed a distributed algo-
rithm based on adding locally dominating edges to the b-matching, which
leads to a Locally Dominant Edge algorithm. Our recent work on
b-matching algorithms have focused on developing the Locally Dom-
inant Edge and b-Suitor algorithms, and implementing them efficiently
on serial computers and shared-memory and distributed-memory multipro-
cessors (Khan et al. 2016a, 2016b). We will discuss the b-Suitor algorithm
later in this section.

4.2. Half-approximation algorithms for b-matching

4.2.1. The Greedy algorithm

Algorithm 8 describes the Greedy algorithm for computing a b-matching
in a graph G.

The Greedy algorithm is a 1/2-approximation algorithm for the max-
imum weight b-matching problem. We prove this by an argument that
employs matroid theory due to Mestre (2006).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

578 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 8 Greedy(G(V,E,w, b))

1: Sort edges in non-increasing order of weights
2: M = ∅
3: for e = (u, v) ∈ E in order do
4: if M + e is a b-matching then
5: M = M + e
6: end if
7: end for
8: return M

Let E be a set of elements, and I a collection of subsets of E. The tuple
(E, I) is a matroid if

(i) for all A ⊆ B, if B ∈ I, then A ∈ I, and

(ii) for all A,B ∈ I with |A| < |B|, there exists an element x ∈ B \A such
that A+ x ∈ I.

The sets in I are called the independent sets of the matroid, and by the
first property, the empty set is independent. Maximal independent sets are
called the bases of the matroid, and by the second property, all bases have
the same cardinality. The reader unfamiliar with matroids may find two
examples helpful. If E is the set of columns of a matrix, and independence
corresponds to linear independence in a vector space, then we have a matric
matroid. If E is the set of edges of a connected undirected graph without
loops, and a subset of edges is defined to be independent if the edges do not
induce a cycle, then we have a graphic matroid. A basis here corresponds
to a spanning tree of the graph.

Assign every element in E a non-negative weight, define the weight of a
set as the sum of the weights of its elements, and consider the problem of
finding an independent set of largest weight. The Greedy algorithm begins
with the empty set, and at each step adds an element of largest weight if its
addition will preserve independence, and rejects it otherwise. The Greedy
algorithm finds an independent set (a basis) of maximum weight if and only
if the tuple (E, I) is a matroid.

It is well known that a matching does not correspond to a matroid, but a
matching in a bipartite graph is the intersection of two matroids. We now
consider a more general system called a k-extendible system related to a
matroid. A k-extendible system is a tuple (E, I) that satisfies property (i)
of a matroid, but property (ii) is replaced by

(ii′) for all A ⊆ B ∈ I and x ∈ E, if A+ x ∈ I but B + x /∈ I, then there
exists Y ⊆ B \A, such that B \ Y + x ∈ I and |Y | ≤ k.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 579

In words, this means that if we can augment a smaller independent set
A with a new element x and preserve its independence, then it should be
possible to remove a subset of size at most k from any superset of A that is
independent, add x to the new set and still preserve independence. Maximal
independent sets do not necessarily have unique maximum cardinality for
k-extendible systems.

As a concrete example, let us consider an undirected graph G = (V,E,w)
with vertex set V , edge set E and non-negative weights on its edges W .
Further, we are given a set of natural numbers b(v) ≤ deg(v) for each
v ∈ V . Let the collection of independent sets I be defined as subsets of
edges that consist of a b-matching in G, i.e. subsets of edges M such that
degM (v) ≤ b(v) for all v ∈ V . Let A be a b-matching in G and let B ⊃ A be
another b-matching. Let x = (u, v) be an edge that could be added to A but
not to B to obtain a larger b-matching. The reason that this edge cannot
be added to B is that the values of one or both of b(u) and b(v) would be
exceeded. By removing one edge incident on u and another edge incident
on v from B, we would be able to add the edge (u, v) to B and preserve
a b-matching. Thus we have shown that a b-matching is a 2-extendible
system.

We now provide some concepts and prove a preliminary lemma in order to
prove that the Greedy algorithm computes a 1/2-approximation algorithm.
We prove a more general result for k-extendible systems. An extension of
an independent set A ∈ I is a superset B of A with B ∈ I. We denote an
extension of maximum weight of a set A by OPT(A).

Let the Greedy algorithm choose elements x1, x2, . . . , xl on a maximiz-
ation problem on a k-independence system (E, I). We denote the set of
chosen elements at the end of the ith iteration of the Greedy algorithm
by Si, with S0 = ∅ and Si = Si−1 + xi. Note that OPT(∅) is the optimal
solution to the maximization problem, and OPT(Sl) = Sl, since the set Sl
is maximal. Furthermore, we have

w(OPT(S0)) ≥ w(OPT(S1)) ≥ · · · ≥ w(OPT(Sl)),

since with increasing index i, Si has fewer extensions available than Si−1.

Lemma 4.1. If (E, I) is a k-extendible system, then the element xi chosen
by the Greedy algorithm at the ith step satisfies

w(OPT(Si−1)) ≤ w(OPT(Si)) + (k − 1) w(xi).

Proof. By the definition of k-extendibility, Si−1 ∈ I and OPT(Si−1) ∈ I.
Now since the Greedy algorithm chooses the element xi at the ith step,
it does not belong to Si−1, but it could belong to OPT(Si−1). If it does,
then OPT(Si−1) = OPT(Si), and the lemma holds trivially. Hence consider
the situation when the element xi 6∈ OPT(Si−1). By k-extendibility, there
exists Y ∈ OPT(Si−1) \ Si−1 such that OPT(Si−1) \ Y + xi ∈ I, where

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

580 A. Pothen, S. M. Ferdous and F. Manne

|Y | ≤ k. We have the relationships

w(OPT(Si−1) = w(OPT(Si−1) \ Y + xi) + w(Y)− w(xi),

≤ w(OPT(Si)) + w(Y)− w(xi).

The first line of the equation above follows since Y belongs to OPT(Si−1)
but xi does not. The second follows because OPT(Si−1) \ Y + xi is an
extension of the set Si = Si−1 + xi by the choice of Y , and OPT(Si) is an
extension of maximum weight of the set Si.

Now we show that any element y ∈ Y is not heavier than the element xi,
i.e. w(y) ≤ w(xi). Assume for the sake of contradiction that w(y) > w(xi).
If y is heavier than xi, then since y /∈ Si−1 by the choice of Y , the element y
must have been considered by the Greedy algorithm before xi was included
in Si, but was not included in the greedy solution. Thus there exists j ≤ i
such that Sj + y /∈ I, but Sj + y ⊆ OPT(Si−1) ∈ I. But this contradicts
property (i) of a k-independence system. Thus w(y) ≤ w(xi), and since all
weights are positive, w(Y) ≤ kw(xi).

Theorem 4.2 (Mestre). If (E, I) is a k-extendible system, then the
Greedy algorithm is a 1/k-approximation algorithm for computing an in-
dependent set of maximum weight.

Proof. Let {xi : i = 1, 2, . . . , l} be the elements chosen by the Greedy
algorithm, and the corresponding sets of chosen elements be denoted by
{Si : i = 1, 2, . . . , l}. We apply Lemma 4.1 l times, beginning with the
empty set S0, to get

w(OPT(S0)) ≤ w(OPT(S1)) + (k − 1) w(x1)

≤ w(OPT(Sl)) + (k − 1)
l∑

i=1

w(xi)

= w(Sl) + (k − 1) w(Sl) = k w(Sl).

The first term in last line of the equation follows from the fact that the
set Sl is maximal, and the second term is obtained by the summing the
weight of the elements in Sl. Since OPT(S0) is an independent set of max-
imum weight, we obtain the 1/k-approximation property of the Greedy
algorithm.

4.2.2. The b-Suitor algorithm

The b-Suitor algorithm, designed by Khan et al. (2016b), computes a 1/2-
approximate b-matching; indeed it computes a matching identical to the
one obtained by the Greedy algorithm, provided ties in weights are broken
consistently in both algorithms. This algorithm is based on proposals, much
like the algorithms for the stable marriage problem and its variants (here the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 581

stable fixtures problem), and is a generalization of the Suitor algorithm.
Vertices can propose to their heaviest neighbours, and these proposals may
be reciprocated or annulled by other vertices. Two vertices are matched
when both propose to each other. Unlike the Greedy algorithm, the b-
Suitor algorithm does not need to process edges in non-increasing order of
weights; instead, it can process vertices in any order, although each vertex
has to make proposals to its available neighbours in non-increasing order of
weights.

The pseudo-code for the b-Suitor algorithm is described in Algorithm 9.
It maintains a priority queue S to track the proposals made in the algorithm.
The queue S(u) consists of the suitors of a vertex u, i.e. those neighbours of
u that currently have an active proposal to u. The operation S(u).insert(v)
adds a vertex v to the priority queue S(u), and S(u).remove(v) removes it.
The value r(u) is the number of proposals that a vertex u currently has
made to its neighbours. We keep track of the lowest weight of a proposal
received by a vertex u (made by a suitor of u) in S(u).last. If u has received
fewer than b(u) proposals, this value is NULL.

In each iteration of the outer while loop, the algorithm processes vertices
that have their current b(.) values unsatisfied, and makes the requisite num-
ber of proposals to satisfy the b(.) values; these vertices are stored in a set
Q. During the iteration it collects vertices whose b(.) values may be decre-
mented in a set Q′ so that they could be processed in the next iteration.
For each vertex u ∈ Q, while its b(u) value is not satisfied and adj(u) has
not been exhaustively searched, the algorithm finds eligible neighbours to
propose to. A neighbour v is an eligible neighbour of u if it holds fewer than
b(v) proposals, or u can beat the lowest offer that v currently has, which
is S(v).last. If u cannot beat this offer, then it considers its next heaviest
neighbour, and this prevents proposals being extended which at the current
stage of the algorithm have no chance of success, saving work. But if v has
fewer than b(v) proposals, or if u can beat the lowest offer that v has, then
u proposes to v, and becomes a suitor of v. In the latter case, u annuls the
lowest-weight proposal of v, say from a vertex y, and y has to make another
proposal in the next iteration. The value of S(v).last is also updated.

Algorithm 9 shows that when a proposal made by a vertex y is annulled, it
is placed into a queue to be processed in the next iteration. This corresponds
to the Gale–Shapley algorithm for stable marriage which processes proposals
in rounds. Instead, one could consider the vertex y making a proposal
immediately, and this would correspond to the McVitie–Wilson algorithm.
It is the possibility of proposals being annulled that permits vertices to be
processed in any order, thus increasing the concurrency in the algorithm. We
have shown that if the edge weights are chosen uniformly at random, then
the total expected work in the algorithm is linear in the number of edges in
the graph, so that the algorithm does not create a lot of unnecessary work

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

582 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 9 b-Suitor algorithm

Input: Graph G = (V,E,w, b).
Output: A 1/2−approximate edge-weighted b-matching M .
Data Structures: Q is the set of vertices that propose in each iteration
of the outer while loop, and Q′ is the set of vertices that need to make
proposals in the next iteration. S(u) is the set of suitors of u, r(u) is the
number of outstanding proposals that u currently has made.

1: procedure b-Suitor(G, b)
2: Q = V ; Q′ = ∅;
3: Initialize array S to be empty and r to zero;
4: while Q 6= ∅ do
5: for vertices u ∈ Q in any order do
6: while r(u) < b(u) and adj(u) 6= exhausted do
7: . Make a proposal from u
8: Let v ∈ N(u) be the heaviest eligible neighbour of u;
9: if v 6= NULL then

10: . Make u a suitor of v
11: Insert u into S(v);
12: r(u) = r(u) + 1;
13: if u annuls the proposal of a vertex y then
14: Remove y from S(v);
15: Add y to Q′; r(y) = r(y)− 1;
16: end if
17: else adj(u) = exhausted;
18: end if
19: end while
20: end for
21: Q = Q′; Q′ = ∅;
22: end while
23: end procedure

(Khan et al. 2018b). This paper also shows that the depth (the length of
the critical path) is O(logm log ∆).

4.3. Implementation and applications of b-matchings

The b-Suitor algorithm was implemented on serial, shared-memory and
distributed-memory computers, and it is currently the fastest practical algo-
rithm that we know of (Khan et al. 2016a, Khan et al. 2016b). It has been
compared with the Greedy algorithm and the Locally Dominant Edge
algorithm (LDE), and it outperforms both these algorithms with regard to
run times. All of these algorithms compute the same b-matching provided

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 583

ties in weights are broken in a consistent manner. The b-Suitor algorithm
has the desirable property that the parallel algorithms and the serial algo-
rithm compute the same b-matching. This algorithm was scaled to more
than 12 000 cores on a distributed-memory parallel computer. An imple-
mentation on GPUs was reported by Naim and Manne (2018).
b-matchings have been applied to a number of problems such as finite ele-

ment mesh refinement (Müller-Hannemann and Schwartz 2000), median loc-
ation problems (Tamir and Mitchell 1998), spectral data clustering (Jebara
and Shchogolev 2006), etc. An important application of b-matching is in
graph-based semi-supervised machine learning, where a b-matching has been
used to replace the well-known k-nearest neighbour graph construction
(Jebara, Wang and Chang 2009). Both of these constructions are discussed
in this context by Subramanya and Talukdar (2014). We will discuss this
matter in more detail when we consider applications of b-edge cover, but we
state here that an approximate b-matching construction reduces the time
complexity of this approach from O(b(V)m log n) to O(m log β), without
any discernible loss in quality in the classification. Recently, Choromanski,
Jebara and Tang (2013) used b-matching to solve a data privacy problem
called adaptive anonymity. Again, we will discuss this problem as an ap-
plication of b-edge cover.

An implementation of b-Suitor is available at https://github.com/Exa-
Graph. Parallel versions of this code will be included in this repository.

5. Vertex-weighted matching

We consider a variant of the matching problem that has not been well
studied. We are given a graph G = (V,E), and a weight function w : V 7→
R≥0 that assigns non-negative real-valued weights to vertices. The weight
of a matching in G is now the sum of the weights on the matched vertices.
The problem is to compute a matching of maximum (vertex-) weight in the
graph G (MVM).

By summing the weights on the endpoints of an edge and assigning it to
the edge, we can transform the vertex-weighted matching problem into an
edge-weighted matching problem. So at first blush it appears that we can
solve MVM problems with edge-weighted matching algorithms. But at least
for exact algorithms, this can increase the run times of the edge-weighted
matching algorithms by three or four orders of magnitude (Dobrian, Halap-
panavar, Pothen and Al-Herz 2018). Additionally the MVM problem has
a rich structure that leads to simpler algorithms than those employed for
the MEM problem. We can say that the MVM problem is closer to the
maximum cardinality matching problem than the maximum edge-weighted
matching problem. Dobrian et al. (2018) have designed both exact and
approximation algorithms for this problem.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

584 A. Pothen, S. M. Ferdous and F. Manne

An MVM can be characterized in two different ways. The first charac-
terization is in terms of augmenting paths and weight-increasing paths. An
augmenting path is defined as earlier, a path that has alternating unmatched
edges and matched edges, with one more unmatched edge than matched
edges. By augmenting a matching using this path, we add the weights
of the unmatched endpoints of the path to the matching, and hence the
cardinality of the matching increases while the weight of the augmented
matching cannot decrease since vertex weights are non-negative. A revers-
ing path is an alternating path with an even number of edges that begins
with a matched edge and ends with an unmatched edge. A reversing path is
weight-increasing if the matched endpoint of the path has lower weight than
the unmatched endpoint. In this case, by switching the matched and un-
matched edges on the path we increase the weight of the matching. Dobrian
et al. (2018) proved the following result.

Theorem 5.1. A matching M is an MVM if and only if there is neither
an augmenting path nor a weight-increasing path with respect to M .

The second characterization is in terms of weight vectors. For any match-
ing M , consider a weight vector which lists the weights of the matched
vertices in non-increasing order. Now we can compare two matchings by
comparing their weight vectors lexicographically. The following result may
also be found in Dobrian et al. (2018).

Theorem 5.2. A matching M is an MVM if and only if its weight vector
is lexicographically maximum among all weight vectors of matchings.

These results lead to two different exact algorithms for the MVM problem.
One of these algorithms processes vertices in non-increasing order of their

weights, and from each unmatched vertex u searches for a heaviest un-
matched vertex v it can reach by augmenting paths. If the augmenting
path search is successful, then the matching is augmented. If it is not suc-
cessful, we discard this unmatched vertex u (we will not find an augmenting
path from u in the future steps of the algorithm). In both cases, we process
the next heaviest unmatched vertex, terminating when we have processed or
matched all the vertices. In this algorithm by the choice of vertices matched
at each step, there will be no weight-increasing path, and it suffices to search
for augmenting paths.

A second algorithm would first compute a maximum cardinality match-
ing (of arbitrary weight) in the graph. Then we search for weight-increasing
paths of even length from each unmatched vertex. If we succeed, then we
switch matched to unmatched edges and vice versa on this path, and in-
crease the matching weight. If we do not succeed, then we process the next
unmatched vertex. Note that in this case, by construction, there cannot
be an augmenting path. This algorithm is attractive practically for several

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 585

reasons. The first is that this algorithm does not need to process vertices
in non-increasing order of weights, and hence there is more concurrency
in this algorithm, making an implementation on a parallel computer feas-
ible. The second is that it is attractive if we compute the Gallai–Edmonds
decomposition (Lovász and Plummer 2009), since this decomposition iden-
tifies a subgraph that has a perfect matching in any maximum cardinality
matching. We can remove this subgraph from further consideration, since
all vertices in the subgraph are matched and every maximum cardinality
matching has the same weight. Hence we need to run the MVM algorithm
only on the residual graph.

The first of these algorithms was designed by Dobrian et al. (2018) and has
time complexity O(nm). Spencer and Mayr (1984) have designed an exact
MVM algorithm with lower O(m

√
n log n) time complexity, which employs

recursion to compute the matching. As far as we know, this algorithm has
not been implemented, and it is not clear if it is practical.

An important reason for designing the exact algorithm discussed in the
previous paragraph is that by restricting the length of the augmenting path
to at most three, we may obtain a 2/3-approximation algorithm. This
result was first obtained for bipartite graphs by Dobrian et al. (2018). Here
one can split the MVM problem into two ‘one-side-weighted’ subproblems.
This means given a bipartite graph G = (V1, V2, E) in the first subproblem
we ignore the weights on V2, and in the second subproblem we ignore the
weights on V1. The advantage is that now we can find any augmenting path
from an unmatched vertex in V1 (V2) for the first (second) subproblem.
The vertices still need to be processed in non-increasing order of weights
as in the exact algorithm, and we limit the search for augmenting paths to
length at most three. Once the two matchings M1 and M2 are obtained,
the Mendelsohn and Dulmage (1958) theorem can be invoked to find a
matching M in which all the V1 vertices (the weighted vertices) in M1

and the V2 vertices (again the weighted vertices) in M2 are matched. The
new matching M has the same weight as the sum of the matchings M1

and M2, and it is a 2/3-approximation to the maximum vertex-weighted
matching. The time complexity of this algorithm is O(m + n log n), which
is linear, except for the sorting step. While this algorithm is easy to state,
its proof of correctness is somewhat involved. The proof works by finding,
for each vertex that is not matched in the approximation algorithm but
matched by the exact algorithm (failed vertices), two matched vertices in
the approximate matching that are at least as heavy as the failed vertex.

Al-Herz and Pothen (2019) have extended this result to non-bipartite
graphs. Here, since there is no bipartition of the vertices, we cannot in-
voke the Mendelsohn–Dulmage theorem, and new concepts about augment-
ing paths are needed. The 2/3-approximation algorithm is described in
Algorithm 10; it processes vertices in non-increasing order of weights, and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

586 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 10 Two-Third Approximate Matching (G = (V,E,w))

Input: A graph G with weights w on the vertices.
Output: A 2/3-approximate vertex-weighted matching M .

1: M ← ∅; Q← V
2: while Q 6= ∅ do
3: Let u be a heaviest vertex in Q
4: Let v denote a heaviest unmatched vertex reachable from u by

an augmenting path P of length at most three
5: if P is found then
6: M ←M ⊕ P ; delete v from Q
7: end if
8: Delete u from Q
9: end while

10: return M

matches each vertex if possible to a heaviest unmatched vertex reachable
by augmenting paths of length at most three. The time complexity of this
algorithm is O(m log ∆ + n log n). The proof of the approximation ratio
involves charging the weight of each failed vertex to two distinct matched
vertices in the approximate matching such that they have equal or higher
weight relative to the failure. These vertices are found by examining the
augmenting paths in the approximation algorithm, where we distinguish
between a vertex from which an augmenting path search begins (an origin),
and a vertex where it ends (a terminus).

Al-Herz and Pothen (2019) have implemented the 2/3-approximation
algorithm for MVM and compare it with an exact maximum edge-weighted
matching algorithm in LEDA (Mehlhorn and Näher 1999), the (2/3 − ε)-
approximation algorithms of Maue and Sanders (2007), the (1−ε)-algorithm
of Duan and Pettie (2014) and a greedy 1/2-approximation algorithm for
MVM. The LEDA algorithm benefits from the fractional matching initializ-
ation; it is about twelve times faster relative to the LEDA algorithm without
any initialization, on problems where both terminated. There are a num-
ber of problems where LEDA without initialization did not terminate in
four hours. On problems where LEDA with fractional initialization termin-
ated in at most four hours but where the algorithm with no initialization
did not, we use the former algorithm as the baseline. The exact MVM
algorithm (it does not use any initialization) was slower than the LEDA
algorithm by a factor less than two. The (1 − ε)-approximation algorithm
with ε = 1/3 was faster than LEDA by a factor of seven for these problems;
the (2/3− ε)-approximation algorithm with a Global Paths Algorithm
initialization was about nine times faster; the 2/3-approximate MVM was
140 times faster than LEDA; the 1/2-approximation algorithm for MVM

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 587

was 400 times faster. There was also a problem (nlpkkt200) where none
of the exact algorithms terminated in four hours, but the 2/3-approximate
MVM computed a matching in under a minute. In terms of weights, the
2/3-approximate MVM and the (2/3−ε)-approximate MEM computed more
than 99.99% of the maximum weight; the (1− ε)-approximation algorithm
was about 1% off the optimal, and the 1/2-approximate algorithm was 3%
off the optimal.

Vertex-weighted matchings have been applied to the design of network
switches (Tabatabaee, Georgiadis and Tassiulas 2001), and scheduling of
astronaut training sessions (Bell 1994). More recently, online algorithms
for vertex-weighted matchings in bipartite graphs have been surveyed by
Mehta (2012) due to applications in internet advertising. Our interest in
this problem was spurred by its application to computing sparse null space
and column space bases of sparse, under-determined matrices (Coleman and
Pothen 1987, Pinar et al. 2006).

6. The edge cover problem

An edge cover in a graph G = (V,E) is a set of edges C such that there is
at least one edge belonging to C incident on each vertex in V . The set of
edges E is a trivial edge cover of the graph G. We consider the problem of
finding an edge cover with minimum cardinality. The following relationship
between a maximum matching and a minimum edge cover is due to Gallai
(1959) and Norman and Rabin (1959), and is described in Theorems 19.1
and 19.2 of Schrijver (2003).

Theorem 6.1. Every maximum cardinality matching of a graph G =
(V,E) is contained in a minimum cardinality edge cover, and every min-
imum cardinality edge cover contains a maximum cardinality matching.
Moreover if we have a maximum cardinality matching in G, we can find
a minimum cardinality edge cover in O(m) time, and vice versa.

The O(m) time in the last part of Theorem 6.1 comes from a simple
algorithm due to Norman and Rabin (1959). Given a maximum cardinality
matching, we add the matched edges to the edge cover; additionally we
add one of the edges incident on each unmatched vertex to the edge cover.
This results in a minimum cardinality edge cover. Further, a minimum
cardinality edge cover can be computed in O(

√
nm) time, the time needed

for a maximum cardinality matching.
Now we consider a weighted graph G = (V,E,w), where w : E 7→ R≥0

is a weight function that maps each edge to a non-negative weight. Recall
that the weight of a set S is the sum of all the weights of the edges in S.
We seek to minimize the weight of an edge cover of G. In the graph in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

588 A. Pothen, S. M. Ferdous and F. Manne

Figure 3.2, there are two minimum weight edge covers of weight 15: the set
of edges {(a, e), (b, f), (c, d)} and {(a, c), (a, e), (b, f), (d, f)}.

The simplest algorithm for computing a minimum weight edge cover se-
lects an edge of minimum weight incident on each vertex and adds it to the
cover. This Nearest Neighbour algorithm (and many other algorithms
that we consider) does not compute a minimal edge cover; that is, there
could be redundant edges that decrease the weight of an edge cover when
they are removed, while retaining the property of being an edge cover of the
graph. We will show later in the context of the more general b-edge cover
problem that this algorithm computes a 2-approximation to an edge cover
of minimum weight, even without the removal of the redundant edges.

Next we describe an approximation-preserving reduction of the minimum
weight edge cover problem to the maximum weight matching problem. The
reduction is mentioned in Chapter 27 of Schrijver (2003), and Huang and
Pettie (2017) proved that it is approximation-preserving. We proceed to
describe this reduction next.

For each vertex v ∈ V we define µ(v) to be the minimum weight of any
edge incident on v. Now we compute a transformed weight w′ for each edge
e = (u, v) as

w′(u, v) = µ(u) + µ(v)− w(u, v).

(Note that we write w(u, v) instead of w((u, v)).) Consider how the weight
of an edge is transformed under this mapping. There are three cases.

Case 1. µ(u) = µ(v) = w(u, v). We call such an edge locally subdominant,
since this edge is of minimum weight among all of its neighbouring edges.
The reader can verify that the transformation does not change the weight
of such an edge; thus w′(u, v) = w(u, v).

Case 2. µ(u) = w((u, v)) > µ(v). The reader can verify that w′(u, v) =
µ(v) < w(u, v).

Case 3. w(u, v) > µ(v) > µ(u). It is easily verified that w′(u, v) < µ(u) <
w(u, v).

The other cases may be obtained from the symmetry of u and v. In all
cases, we see that the transformed weight of an edge is no larger than the
minimum weight among its neighbouring edges.

Assume that we are given a matching M with the transformed weights
on the edges. Define V (M) to be the set of matched vertices in M , and let
e(v) denote an edge of minimum weight incident on v. We can compute an
edge cover C as follows:

C = M ∪ {e(v) : v ∈ V \ V (M)}.
Hence the edge cover consists of the matched edges and a set of minimum
weight edges incident on the unmatched vertices.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 589

If M∗ is a maximum weight matching with respect to the weights w′,
then the resulting edge cover C∗ is an edge cover of minimum weight with
respect to the weights w. Furthermore, Huang and Pettie showed that this
reduction is approximation-preserving.

Theorem 6.2. Let M be (1−ε)-approximate matching obtained with the
transformed weights w′ from a graph G = (V,E,w). Then the edges in M
together with a set of minimum weight edges incident on the unmatched
vertices constitute a (1 + ε)-approximate edge cover C of the graph G with
respect to the original weights w.

Proof. Let C∗ denote an optimal edge cover with respect to the weights
w and let M∗ denote an optimal matching with respect to the weights w′.
Since we have shown that w′(u, v) ≤ w(u, v) for all edges (u, v), we have
that

w′(M∗) =
∑

(u,v)∈M∗

w′(u, v) ≤
∑

(u,v)∈M∗

w(u, v) = w(M∗) ≤ w(C∗).

We make use of this result in the following.
From the construction of C and the definition of M , we have

w(C) = w(M) + µ(V \ V (M))

= µ(V (M))− w′(M) + µ(V \ V (M))

= µ(V)− w′(M).

Similarly we obtain

w(C∗) = µ(V)− w′(M∗). (6.1)

Making use of the approximation ratio of the matching algorithm that com-
puted M , we obtain

w(C) = µ(V)− w′(M)

≤ µ(V)− (1− ε)w′(M∗)
= µ(V)− w′(M∗) + ε w′(M∗)

= w(C∗) + ε w′(M∗)

≤ (1 + ε) w(C∗).

In the third line we used (6.1), and in the fourth line we made use of the
inequality from the first paragraph. This completes the proof.

We can conclude that the time complexity of computing a minimum
weight edge cover is the same as that of computing a maximum weight
matching, O(mn + n2 log n) (Gabow 2018). Furthermore, we can compute
an approximate minimum weight edge cover using one of the approximate
maximum weight matching algorithms.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

590 A. Pothen, S. M. Ferdous and F. Manne

We now turn to a reduction of an edge cover to a minimum weight perfect
matching problem, described in Schrijver (2003). We make a second copy
of the graph G which we call G′. We join each vertex v in G with its corres-
ponding vertex v′ in G′ by an edge with weight set to twice the minimum
weight edge incident on v. We call these latter edges the linking edges. By
construction the doubled graph has a perfect matching. Furthermore, we
can choose the matched edges in G′ to correspond to copies of the matched
edges in G. We replace each linking edge (v, v′) in the matching by a min-
imum weight edge incident on the vertex v, and add it to the edge cover. To
these edges we add the matched edges from G, to obtain a minimum weight
edge cover of G. This reduction of an edge cover to a perfect matching
was modified to compute a prize-collecting variant of the minimum weight
edge cover (in which vertices might not be covered by paying a cost) by
Azad et al. (2010) to compute a dissimilarity measure for high-dimensional
proteomic data.

A third reduction to matching, also mentioned in Schrijver (2003), com-
putes b′(v) = deg (v) − 1, and then computes a b′-matching of maximum
weight. A minimum weight edge cover is the set of edges complementary to
the matching. We will discuss this algorithm in more detail when we con-
sider the b-edge cover problem. We will also describe some computational
results on the edge cover problem after we discuss the latter problem.

7. The b-edge cover problem

Given a graph G = (V,E) and a function b(v) that maps each vertex V ∈ V
to a natural number, a b-edge cover is a subset of edges C such that at least
b(v) edges in C are incident on v. We assume that b(v) ≤ deg (v). If b(v)
is identically equal to one for all vertices v, then we have the edge cover
problem. If the edges are weighted by a non-negative function w(.), then
the weight of a b-edge cover is the sum of weights of the edges in the cover.
The problem we consider is to compute a b-edge cover of minimum weight.
Unfortunately the weight transformation approach we used to compute a
minimum weight edge cover from a maximum weight matching does not
work for b-edge cover. An exact algorithm for the problem has polynomial
time complexity, since it can be computed as the complement of a maximum
weight b′-matching, where b′(v) = deg (v) − b(v) for all v ∈ V . We seek to
design approximation algorithms that have near-linear time complexity and
have more concurrency.

7.1. b-edge cover algorithms

The simplest algorithm that one could think of for the b-edge cover problem
is for each vertex v to independently choose b(v) edges to add to the cover.
This is the b-Nearest Neighbour algorithm (bNN) described in Algo-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 591

Algorithm 11 b-Nearest Neighbour(G = (V,E,w, b))

1: C = ∅
2: for each v ∈ V do
3: Ev = b(v) lightest edges incident on v
4: C = C ∪ Ev
5: end for
6: return C

rithm 11, and we show in Section 7.5 that this leads to a 2-approximation
algorithm for the minimum weight b-edge cover problem.

Practically the weight of the edge cover could be reduced by removing
redundant edges. An edge (u, v) is redundant if there are more than b(u)
edges from the cover incident on u and there are more than b(v) edges from
the cover incident on v. We say that such a vertex u or v is over-saturated;
if there are exactly b(u) edges incident on a vertex u it is saturated; and if
fewer than b(u) edges are incident on u (this can happen only during the
computation of an edge cover since it violates the requirements of an edge
cover), then it is unsaturated.

The next algorithm one could think of is a greedy algorithm, except that
unlike the matching problem, here the weights have to be dynamically up-
dated. This algorithm is inspired by a greedy algorithm for the set mul-
ticover problem, in which we are given a collection of subsets of a set, and
we are required to choose subsets from the collection so that each element
v in the set is covered b(v) times. The Greedy algorithm for the set cover
problem is described by Chvatal (1979). The b-edge cover problem is a
special case of the set multicover problem where the elements in the set cor-
respond to vertices, and subsets to edges, which consist of pairs of vertices.

We define the effective weight of an edge as the weight of the edge di-
vided by the number of its unsaturated endpoints. The Greedy algorithm
for minimum weight edge cover works as follows. Initially, no vertices are
covered, and the effective weights of all the edges are half of the edge weights.
At each iteration the algorithm chooses an edge of minimum effective weight
and adds it to the cover. It then decrements the b(.) values of the endpoints
of this edge by one, and updates the effective weights of its neighbouring
edges. For the effective weight update, there are three possibilities for each
edge: (i) none of its endpoints is saturated, and there is no change in its ef-
fective weight, (ii) one of the endpoints is saturated, and its effective weight
doubles, or (iii) both endpoints are saturated, its effective weight becomes
infinite, and the edge is marked as deleted. The algorithm iterates until all
vertices are saturated. The algorithm is described in Algorithm 12.

We can see from an analysis of a Primal Dual algorithm for this problem
(provided in Section 7.4) that this algorithm produces an edge cover whose

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

592 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 12 Greedy-b-Edge Cover (G = (V,E,w, b))

1: C = ∅
2: Compute effective weight of all edges e ∈ E
3: while there exists an unsaturated vertex do
4: Add an edge of minimum effective weight e = (u, v) to C
5: Delete e
6: Decrement b(u) and b(v) by one
7: for x ∈ {u, v} do
8: if b(x) = 0 then update effective weights of edges incident on x
9: Delete any edge (x, y) with b(y) = 0

10: end if
11: end for
12: end while
13: return C

weight is at most 3/2 the minimum weight. The worst-case time complexity
of the Greedy algorithm is O(βm log n).

The next algorithm we consider is the Lazy Greedy algorithm. The
effective weight of an edge can only increase during the Greedy algorithm,
and we exploit this observation to design a faster variant. The idea is to
delay updating effective weights of edges, which is the most expensive step
in the algorithm, until they are needed. If the edges are maintained in non-
increasing order of weights in a heap, then we update the effective weight of
only the top edge; if after the update, its effective weight is no larger than
the effective weight of the next edge in the heap, then we could add the
top edge to the cover as well. A similar property of greedy algorithms has
been exploited in submodular optimization, where this algorithm is known
as the Lazy Greedy algorithm (Minoux 1978). Its time complexity is
O(m log n), which is better than the Greedy algorithm, and in practice it
performs even better. We refer the reader to Ferdous, Pothen and Khan
(2018) for more details on this algorithm.

Yet another variant of the Greedy algorithm is the Locally Sub-
dominant Edge (LSE) algorithm. An edge is locally subdominant if it has
minimum effective weight among all of its neighbouring edges. The LSE
algorithm identifies locally subdominant edges, adds them to the cover,
and updates the effective weight of its neighbouring edges. This process
iterates until no unsaturated vertices remain. This algorithm was proposed
by Khan et al. (2016a), and they proved that it is also a 3/2-approximation
algorithm.

We briefly consider an algorithm that obtains a b-edge cover from the com-
plement of a b′-matching. For each vertex v, define b′(v) = deg (v) − b(v),
and then compute a b′-matching of maximum weight. The complement of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 593

the matching is a b-edge cover of minimum weight. What is interesting is
that if we use a 1/2-approximation algorithm that matches locally dominant
edges such as the Greedy b′-matching algorithm or the b′-Suitor algo-
rithm, then we can show that the resulting b-edge cover is a 2-approximation
to a minimum weight b-edge cover. This algorithm, called the matching
complement edge cover (MCE) algorithm, was designed by Khan et al.
(2018b). The MCE algorithm works with static edge weights since it com-
putes a matching, not an edge cover, and hence it has much more concur-
rency than the other algorithms described thus far except for the b-Nearest
Neighbour algorithm. An important feature of the MCE algorithm is that
it computes a maximal b′-matching, and hence the complement is a minimal
b-edge cover, which implies that there are no redundant edges to remove.

There are interesting relationships among the algorithms that have been
described in this section. The Greedy, Lazy Greedy and LSE algo-
rithms compute the same b-edge cover of a graph if (1) ties in weights are
broken consistently, and (2) redundant edges are removed greedily. By this
we mean that we consider the subgraph induced by the over-saturated ver-
tices, compute a maximum weight matching in this graph, and remove these
edges as redundant. These results are obtained in Khan and Pothen (2016)
and Ferdous, Pothen and Khan (2018). The Primal Dual algorithm we
describe in the next section will also compute the same b-edge cover under
the two conditions mentioned above. Since we prove that this last algorithm
has the approximation ratio 3/2, we can conclude that all the algorithms
mentioned in this paragraph have the same approximation ratio.

Finally we discuss the (1 + ε)-approximation algorithm for b-edge cover
designed by Huang and Pettie (2017). One way to solve a minimum weight
b-edge cover is to reduce it to a capacitated b-matching problem and then
solve the latter problem (Schrijver 2003). Unfortunately this reduction
is not approximation-preserving. However, the authors show that if a b-
matching is constructed maintaining a certain approximate complementary
slackness condition, then the complement graph, a b-edge cover, would also
satisfy an approximate complimentary slackness condition, which results in
the desired approximation preservation. They describe a linear time algo-
rithm to find such a b-matching. This linear time scaling algorithm is a
generalization of the approximation algorithm for maximum weight match-
ing designed by Duan and Pettie. As a by-product they also obtain an
O(m

√
b(V))-time algorithm for the cardinality version of these problems.

7.2. A linear programming formulation

Now we turn to a linear programming formulation of the b-edge cover prob-
lem to describe primal–dual algorithms for the b-edge cover problem. Using
the primal–dual framework, we will describe a 3/2-approximation algorithm,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

594 A. Pothen, S. M. Ferdous and F. Manne

analyse the bNN algorithm and show that it is a 2-approximation algorithm,
and describe a ∆-approximation algorithm.

We begin by describing the primal and dual linear programming (LP)
formulations of the minimum weight b-edge cover problem. Recall that
we consider a graph G = (V,E,w, b), where w(.) denotes the non-negative
weights on the edges, and we need to choose at least b(v) edges incident on
each vertex v. Recall that a vertex v is uncovered or unsaturated if a current
b-edge cover has fewer than b(v) edges in it.

Define a vector x ∈ {0, 1}m with the intent that x(e) = 1 if the edge is in
the cover, and 0 otherwise. Denote the set of edges incident on a vertex v
by δ(v) (i.e. the set of edges one of whose endpoints is v). The integer linear
program (ILP) formulation of the minimum weight edge cover problem is
as follows:

min
∑
e∈E

w(e)x(e), subject to
∑
e∈δ(v)

x(e) ≥ b(v), for all v ∈ V,

x(e) ∈ {0, 1}, for all e ∈ E. (7.1)

The linear programming relaxation of the ILP is obtained by relaxing the
binary constraint x(e) ∈ {0, 1} to 0 ≤ x(e) ≤ 1. The relaxation is as follows:

min
∑
e∈E

w(e)x(e), subject to
∑
e∈δ(v)

x(e) ≥ b(v), for all v ∈ V,

xe ≥ 0, −x(e) ≥ −1, for all e ∈ E. (7.2)

The final constraint, equivalent to x(e) ≤ 1, indicates that we may use each
edge e at most once in the cover. Any x satisfying the constraints of this
linear program is a feasible solution.

To construct the dual program of the relaxed linear program we define a
dual variable for each of the constraints. We define two sets of variables,
namely y ∈ Rn≥0 and z ∈ Rm≥0. The dual is as follows:

max
∑
v∈V

b(v)y(v)−
∑
e∈E

z(e),

subject to y(i) + y(j)− z(e) ≤ w(e), for all e = (i, j) ∈ E,
y(v), z(e) ≥ 0, for all v ∈ V and e ∈ E. (7.3)

Again, any y and z satisfying the constraints of the dual program are dual
feasible.

For 1-edge cover, the upper bound constraints on the primal variables
for the LP relaxation shown in (7.2), i.e. x(e) ≤ 1 for all e ∈ E, are not
necessary. If in the solution there is any x(e) > 1, we can change it to
x(e) = 1, producing a feasible solution with a lower objective value. For the
b-edge cover formulation, without the upper bound constraints we cannot
guarantee that the relaxation produces a solution in [0, 1]. Consider the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 595

dual problem, (7.3). The dual variable corresponding to each upper bound
constraint on x(e) in the primal is z(e). These variables serve the same
purpose as its counterpart constraints in the primal, by helping the program
to choose distinct edges in the cover by providing enough slack to make some
of the dual constraints feasible. We will discuss the role of z(e) variables in
our analysis of the algorithm.

Let EC ∗ be the objective value of an optimum b-edge cover solution,
ECLP the objective value of an optimum solution of the relaxed LP shown
in (7.2), and ECdual the objective value of a feasible solution of the dual
problem shown in (7.3). Then from linear programming and weak duality
theory we have

ECdual ≤ ECLP ≤ EC ∗. (7.4)

7.3. Dual fitting algorithms

Now let us assume x is a feasible integral solution to the primal linear pro-
gram, and let ya, za be the approximate dual solutions to the corresponding
dual program. We say these are approximate dual variables as they may
not necessarily satisfy the dual constraints.

Suppose we have a hypothetical algorithm that satisfies the following two
properties.

Property 7.1 (paid in full). The algorithm finds these primal and ap-
proximate dual variables that maintain the equality of primal and approx-
imate dual objective values, that is,∑

e∈E
w(e)x(e) =

∑
v∈V

b(v)ya(v)−
∑
e∈E

za(e). (7.5)

Property 7.2 (shrinking factor). Let α > 0 be a constant such that
y = ya/α and z = za/α become dual feasible variables.

We can prove that this hypothetical algorithm guarantees an α-approx-
imation. Replacing ya and za in (7.5), we have∑

e∈E
w(e)x(e) = α ·

(∑
v∈V

b(v)y(e)−
∑
e∈E

z(e)

)
. (7.6)

Since y and z are dual feasible, from (7.4) and (7.6) we have∑
e∈E

w(e)x(e) = α ·
(∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)

)
≤ α · ECLP ≤ α · EC ∗. (7.7)

This proves the required α-approximation guarantee. We now show how to
instantiate this hypothetical algorithm to obtain 3/2- and 2-approximation
algorithms for b-edge cover.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

596 A. Pothen, S. M. Ferdous and F. Manne

7.4. A 3/2-approximation algorithm

Rajagopalan and Vazirani (1993) have employed dual fitting to design an
algorithm for set multicover. The Primal Dual algorithm that we present
for 3/2-approximation of b-edge cover is motivated by this algorithm. It also
generalizes a primal–dual edge cover algorithm discussed in Ferdous, Pothen
and Khan (2018). Our aim is to formulate approximate dual variables such
that the two properties mentioned earlier are satisfied. We first define a
few concepts and variables required to understand the algorithm and its
analysis.

• An unsaturated vertex v is covered by one of its incident edges e if
during the execution of the algorithm e is selected to cover that vertex.
This edge e is called a covering edge of the vertex v. Note that after
covering a vertex v by e it may still be unsaturated. Note also that a
b-edge cover might include edges incident on v that are not covering
edges of v, since an edge (u, v) may have been chosen as a covering
edge of u but not v. We denote by Sv the set of covering edges of v.

• In general during the run of the algorithm an edge e is available if it
can cover at least one of its endpoints. We define a set Qe to denote the
endpoints that e covers, and hence 0 ≤ |Qe| ≤ 2. The set C includes
the edges in the cover.

• The effective weight of an edge, eff weight(e), is defined as the ratio of
the weight of the edge and the number of its unsaturated endpoints.
The effective weight of an edge can be thought of as the price the
algorithm needs to pay to cover its unsaturated endpoints. Hence we
define price(v, e) as the effective weight of e where v is an unsaturated
endpoint of e. When an edge e is included in the cover, we fix the
price(v, e) value(s) of the endpoint(s) it covers.

• Let r(v) be a variable defined on each vertex v. We call it the dynamic
requirement of saturation since this variable will let us know whether
the vertex v is already saturated or not. The r(v) values are initialized
to the b(v) values.

• We maintain a list L(v) that consists of r(v) edges of lowest effective
weight incident on a vertex v. Only these edges will be considered for
inclusion in the b-edge cover. If there are two or more vertices with
the r(v)th lowest effective weight, this list removes the need to process
the edges in non-decreasing order of effective weights. Recall that both
the effective weights and the values of r(v) are dynamically changing
in the algorithm.

The output of the algorithm is a set of edges C. We can derive an integral
primal solution from C by setting xe = 1 for all e ∈ C and xe = 0 for all

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 597

Algorithm 13 Primal Dual(G = (V,E,w, b))

1: C = ∅
2: while there exists an unsaturated vertex do
3: Call Price Assignment(G(V,E,w, b),max price)
4: Call Augment Cover (G(V,E,w, b),max price, C, r)
5: end while
6: return C

Algorithm 14 Price Assignment(G = (V,E,w, b),max price)

1: for each v ∈ V do
2: if v is unsaturated then
3: max price(v) = {eff weight(e) : r(v)th lowest effective weight of

an edge incident on v}
4: L(v) = r(v) edges of lowest effective weight incident on v
5: end if
6: end for

e ∈ E \C. We now introduce max price(v), a non-negative variable defined
on each vertex v, which is equivalent to the approximate dual variable ya(v).
During the execution of the algorithm we set

max price(v)

= r(v)th lowest effective weight among the edges incident on v.

We create another non-negative variable excess(e) equivalent to za(e) for
each edge e. Unlike the max price, the excess variable is not necessary
during the run of our algorithm, but it is needed for the proof analysis.
Hence we defer its definition till then.

The pseudocode of the algorithm is shown in Algorithm 13. The algorithm
iterates until all the vertices become saturated. In each iteration there
are two phases: the Price Assignment phase and the Augment Cover
phase. The Price Assignment phase computes the max price(v) values of
each unsaturated vertex. These values are used by the Augment Cover
phase to add as many edges to the cover as possible.

We provide the pseudocode for the Price Assignment phase in Algo-
rithm 14.

The second phase of the algorithm, the Augment Cover phase, adds
vertices to the edge cover using the max price information set by the first
phase. The pseudo-code for the Augment Cover phase is presented in
Algorithm 15. This phase scans the edges to find eligible ones to add in the
cover. An edge e is selected as follows. If the edge e = (i, j) covers both of its
endpoints and if its effective weight is less than or equal to the max price(.)
values of both of its endpoints, then it would be included in the cover.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

598 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 15 Augment Cover(G = (V,E,w, b),max price,price,C, r)

1: for each e = (u, v) ∈ E do
2: if u and v are both covered then
3: Mark (u, v) as deleted
4: Continue
5: end if
6: if u and v are both uncovered, e ∈ L(u) ∩ L(v), and

eff weight(e) ≤ {max price(u),max price(v)} then
7: Set price(u, e) and price(v, e) to eff weight(e)
8: C = C ∪ (u, v)
9: Decrease r(u) and r(v) by 1

10: Mark (u, v) as deleted
11: else if only u is uncovered, e ∈ L(u), and

eff weight(e) ≤ max price(u) then
12: Set price(u, e) to eff weight(e)
13: C = C ∪ (u, v)
14: Decrease r(u) and r(v) by 1
15: Mark (u, v) as deleted
16: else if only v is uncovered, e ∈ L(v), and

eff weight(e) ≤ max price(v) then
17: Set price(v, e) to eff weight(e)
18: C = C ∪ (u, v)
19: Decrease r(u) and r(v) by 1
20: Mark (u, v) as deleted
21: end if
22: end for

Upon finding such an edge e the algorithm fixes the values of price(i, e) and
price(j, e) to the value of eff weight(e). Note that the equation price(i, e) +
price(j, e) = w(e) is then satisfied by this edge. On the other hand if the
edge e covers only one endpoint u, to be included in the cover its effective
weight must be less than or equal to the max price(u) value. In this case
we fix price(u, e) to be w(e) so that the equation price(u, e) = w(e) holds.
Whenever we add an edge to the cover, we mark it as deleted and update
the r(v) values of its endpoints. (We update both r(u) and r(v) when an
edge (u, v) is deleted for identifying redundant edges in a post-processing.)

Once the algorithm terminates, we have settled the price(v, e) values for
each vertex and covering edge pair. We have also updated max price(v)
values for each vertex. For each vertex v there are two kinds of edges
incident on v. One kind is the set of covering edges, which were the edges
used to cover vertex v. The second kind would be other edges incident on
v that were necessary to cover the other endpoint w of an edge (v, w). Let

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 599

v1

v2 v3 v4

e1(10) e2(20)

e3(30) e4(30)

Figure 7.1. A small graph whose b-edge cover is to be computed.

Sv denote the set of covering edges incident on each vertex v, and note that
|Sv| = b(v). Observe also that when the algorithm terminates, the value of
max price(v) = max{price(v, e) : e ∈ Sv}.

We have not yet defined how we get the other set of approximate dual
variables, i.e. excess. These variables are not necessary for the execution
of the algorithm, but they are needed for the proof analysis. We motivate
this variable by means of a small example.

Example 7.3. Consider the graph with four vertices v1, v2, v3 and v4 in
Figure 7.1, with the edge labels and weights also shown. The b(v) value
is 2 for each vertex v except v4, for which it is 1. The optimal edge cover
is the graph itself. We run the Primal Dual algorithm on this problem.
First, in the Price Assignment phase, we assign the price values of each
vertex and edge pair. Here price(v1, e1) = price(v2, e1) = 5, price(v1, e2) =
price(v3, e2) = 10, price(v2, e3) = price(v3, e3) = 15 and price(v3, e4) =
price(v4, e4) = 15. The max price(v) values are as follows: max price(v1) =
15, max price(v2) = 10, max price(v3) = 15 and max price(v4) = 15. In the
next phase, suppose we scan through edges in the order e1, e2, e3 and e4. We
select e1 since the effective weight of this edge is less than the max price(.)
values for both endpoints. We decrease the r(v1) and r(v2) values by 1 and
mark e1 as deleted. Similarly we select e2 and e3. Note that v1, v2 and v3
are saturated. We cannot add e4 in this phase because the effective weight
of e4, which is now 30, is greater than max price(v4) which is 15. Next
we start the second iteration. In the Price Assignment phase, we set
max price(v4) as 30 and in the Augment Cover phase we select e4, since
the effective weight of e4 equals max price(v4).

At the termination of the algorithm, the max price values for our example
are as follows: max price(v1) = 10, max price(v2) = 15, max price(v3) = 15
and max price(v4) = 30. Let us consider the dual constraints defined in
(7.3). For e1 the left side of the constraint using the approximate du-
als is max price(v1) + max price(v2) − excess(e1). But max price(v1) +
max price(v2) = 25, which is much greater than the weight of e1. So we
have a large excess on the summation that we need to balance. This is the
purpose of the approximate dual, excess. If an edge e was not included
in a cover we set excess(e) = 0. If an edge e = (i, j) covered both of its

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

600 A. Pothen, S. M. Ferdous and F. Manne

endpoints when e was added to the cover, we set

excess(e) = (max price(i)− price(i, e)) + (max price(j)− price(j, e)).

Otherwise if e covered only one endpoint i when it was added to the cover,
then

excess(e) = max price(i)− price(i, e).

We can restate this as

excess(e) =
∑
q∈Qe

(max price(q)− price(q, e)).

In the example, the excess values of the edges are as follows: excess(e1) =
(10−5)+(15−5) = 15, excess(e2) = (10−10)+(15−10) = 5, excess(e3) =
(15−15)+(15−15) = 0 and excess(e4) = 30−30 = 0. Observe that all of the
dual constraints now become feasible except for e4, where the left side of the
constraint is max price(v3) + max price(v4)− excess(e4) = 15 + 30−0 = 45,
which is greater than the weight of the edge. We will show that we can scale
the approximate duals in such a way that the scaled dual variables always
satisfy the constraints.

Lemma 7.4. The approximation ratio of the Primal Dual algorithm
is 3/2.

Proof. First note that by construction max price(v) is non-negative; since
it is the maximum of the price values of incident edges of a vertex, excess(e)
is also non-negative. We need to show that by setting α = 3/2, the paid in
full and shrinking factor properties defined in Section 7.3 are maintained.
Using the approximate duals, max price and excess, we first show that
the objective value of dual LP defined in (7.3) equals the weight of the cover
that we get from the algorithm. Let us first consider the right side of the
(approximate) dual objective value, i.e.

∑
e∈E excess(e). Note that∑

e∈E
excess(e) =

∑
e∈C

excess(e),

since excess(e) = 0 if e is not in the cover. Then we have∑
e∈C

excess(e) =
∑
e∈C

∑
q∈Qe

(max price(q)− price(q, e))

=
∑
e∈C

∑
q∈Qe

max price(q)−
∑
e∈C

∑
q∈Qe

price(q, e)

=
∑
v∈V

b(v) ·max price(v)−
∑
e∈C

w(e). (7.8)

The second term in the last line of (7.8) follows because
∑

q∈Qe
price(q, e)

is equal to w(e), an invariant we maintain during the execution of Augment

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 601

Cover phase. For the first term note that a particular vertex v ∈ V will
appear exactly b(v) times in the sum.

Replacing
∑

e∈E excess(e) in the objective value of the dual LP from (7.3),∑
v∈V

b(v) ·max price(v)−
∑
e∈E

excess(e)

=
∑
v∈V

b(v) ·max price(v)−
∑
v∈V

b(v) ·max price(v) +
∑
e∈C

w(e)

=
∑
e∈C

w(e). (7.9)

But we cannot substitute max price for y and excess for z because
these are not dual feasible. Define α ≡ 3/2, and set y = max price/α
and z = excess/α. We show that the scaled variables y and z now become
feasible. There are two scenarios to consider.

For the first scenario assume that an edge e belongs to the cover. We
have two cases.

Case 1. e = (i, j) covers both of its endpoints. Then replacing y(i), y(j)
and z(e), the left side of the first constraint in (7.3),

1

α
· (max price(i) + max price(j)− (max price(i)− price(i, e))

− (max price(j)− price(j, e)))

=
1

α
(price(i, e) + price(j, e)) ≤ 1

α
w(e) ≤ w(e). (7.10)

The last line follows from the fact that during the algorithm we maintain
price(i, e) + price(j, e) = w(e).

Case 2. The edge e covers only one endpoint, say i. Using the definitions
of y(i), y(j) and z(e) with e = (i, j), the left side of the constraint in (7.3)
becomes

1

α
· (max price(i) + max price(j)− (max price(i)− price(i, e)))

=
1

α
(max price(j) + price(i, e)). (7.11)

From the algorithm, price(i, e) = w(e). When vertex j was saturated, vertex
i was still unsaturated. We have not picked e as a covering edge for j. Since
e was in the list of eligible edges L(j), the price values of the covering edges
incident on j must be less than or equal to w(e)/2. Since max price of a
vertex is the maximum of the price values of the covering edges incident on
that vertex, max price(j) ≤ w(e)/2. So we have

1

α
· (max price(j) + price(i, e)) ≤ 1

α
· 3

2
w(e) ≤ w(e).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

602 A. Pothen, S. M. Ferdous and F. Manne

v1

v2 v3

v4
ε

w
2w

2w

Figure 7.2. A tight example for the Primal Dual algorithm.

We now consider the second scenario when e is not part of the b-edge
cover and excess(e) = 0. So the left side of the constraint becomes

1

α
· (max price(i) + max price(j)).

Without loss of generality assume i has become saturated first and then j.
This immediately establishes that max price(i)≤w(e)/2 and max price(j)≤
w(e). We have

1

α
· (max price(i) + max price(j)) ≤ w(e).

We combine the analysis as follows:∑
e∈C

w(e)

=
∑
v∈V

b(v) ·max price(v)−
∑
e∈E

excess(e) (from (7.9))

= α ·
(∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)

)
(replacing max price and excess)

= α · ECdual ≤ α · ECLP ≤ α · EC ∗ (from (7.6)).

This gives the 3/2-approximation ratio.

The approximation ratio is tight, and a tight example is the graph shown
in Figure 7.2. Suppose b = 1 for each vertex. In the first iteration the
Primal Dual algorithm will add (v1, v4) to the cover, and it cannot add
any other edge. In the second iteration since all the remaining edges have
the same effective weight, it may add any one of the edges (v1, v3), (v1, v2)
or (v2, v3). Suppose it chooses the edge (v1, v3). Then to cover the vertex v2,
it has to choose either (v1, v2) or (v2, v3), resulting in a cover with weight
3w + ε, whereas the optimal weight is 2w + ε. So as ε → 0, we get the
approximation ratio 3/2.

Next we derive the time complexity of the algorithm. We can do a couple
of optimizations on the general algorithm presented in Algorithm 13, which
are as follows.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 603

• In the Augment Cover phase, when an edge is selected we mark
all the neighbouring vertices of its covered endpoints as potential ver-
tices. During the Price Assignment phase we need only update the
max price values of the potential vertices.

• In the Price Assignment phase, when the max price value changes,
we mark all of its incident edges as potential covering edges. In Aug-
ment Cover phase we can scan only these edges.

Lemma 7.5. The time complexity of Algorithm 13 is O(β∆m).

Proof. Initially all the vertices and edges are marked as potential (see the
optimization of the algorithm just mentioned). During the execution of the
algorithm a vertex v can be marked at most deg (v) times as potential. Each
time it is marked it will have to find an edge incident on it with the r(v)th
minimum effective weight. One can find such an entry in O(β deg (v)) time.
Summing over all vertices we obtain O(β∆m).

Similarly, during the Price Assignment phase, an edge e = (i, j) can
be marked at most deg (i) + deg (j) = O(∆) times. Summing over m edges
we obtain O(∆m). Hence the time complexity is O(β∆m).

7.5. A 2-approximation algorithm

We have presented in Algorithm 11 the b-Nearest Neighbour algorithm
for finding a b-edge cover. It is similar to the popular and well-known
k-nearest neighbour graph construction algorithm, used in many domains
including machine learning and data mining to represent data by a sparse
graph or to sparsify a graph. The difference between these problems is how
the values of k and b are defined. In the former case k is constant for all
vertices while the latter case is more general, with the option to set user-
defined values of b(v) for each vertex in the graph. This algorithm, like many
other algorithms for the b-edge cover problem, could have redundant edges
in the cover, i.e. edges that could be removed while the residual edges form
a b-edge cover, thus resulting in an edge cover of lower weight. However,
even without removing such edges, we can show that this algorithm gives
us an approximate solution to the b-edge cover problem, where the weight
of the cover is at most twice the optimal weight. In this section we prove
this result using the dual fitting framework developed in Section 7.3.

Lemma 7.6. The approximation ratio of the b-Nearest Neighbour
algorithm is 2.

Proof. Let x be the primal integral solution and C a b-edge cover computed
by the algorithm; hence x(e) = 1 if e ∈ C, and otherwise x(e) = 0. Let Sv
denote the set of the b(v) lightest edges incident on v. We define a price value
for each covering vertex and edge pair, and consider an edge e = (i, j) ∈ C.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

604 A. Pothen, S. M. Ferdous and F. Manne

If the weight of the edge e is among the lightest b(i) edges incident on the
vertex i and the lightest b(j) edges incident on j, then we set price(i, e) =
price(j, e) = w(e)/2. In this case we say the edge e covers both of its
endpoints. Otherwise if e is only among the lightest b(i) (b(j)) edges incident
on i (j), we assign price(i, e) = w(e) (price(j, e) = w(e)). In this case the
edge e covers only one of its endpoints. Next we set the approximate dual
variables. We define for each vertex v, max price(v) = maxe∈Sv price(v, e).
For each edge e ∈ C, let Qe denote its covered endpoints. Note that Qe
may contain one or two vertices. We define for each e ∈ C, excess(e) =∑

q∈Qe
(max price(q)− price(q, e)). If an edge e is not included in the cover

then we set excess(e) = 0. Note that since price values of a vertex and
edge pair are always non-negative, max price is non-negative. Again, as
max price(v) ≥ price(v, e) for all e ∈ Sv, the excess variable is also non-
negative.

We now show that with α = 2, the two properties mentioned in Section 7.3
are satisfied by the approximate dual variables max price and excess.

The first property is the equality of primal objective and approximate
dual objective functions, and this follows directly from the corresponding
proof in the 3/2-approximation algorithm described in Section 7.4.

For the second property, we show that setting y(v) = max price(v)/α and
z(e) = excess(e)/α for α = 2 make these dual feasible. We consider two
scenarios for an edge e ∈ E.

In the first scenario e belongs to the cover. Then replacing y(v) and z(e)
on the left side of the first constraint of (7.3), we obtain

y(i) + y(j)− z(e) =
1

α
(max price(i) + max price(j)

−
∑
q∈Qe

(max price(q)− price(q, e))). (7.12)

We have two cases to consider.

Case 1. The edge e covers both of the endpoints, and hence Qe = {i, j}.
Recall that in this case e is among the lightest b(i) edges incident on i, and
the lightest b(j) edges incident on j. The price values are then assigned as
price(i, e) = price(j, e) = w(e)/2. Simplifying, we obtain

y(i) + y(j)− z(e) =
1

α
((max price(i) + max price(j))

− (max price(i)− price(i, e))− (max price(j)− price(j, e)))

=
1

α
(price(i, e) + price(j, e))

=
1

α
(w(e)/2 + w(e)/2) ≤ w(e). (7.13)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 605

Case 2. e covers only one endpoint, say i. In this case we assign price(i, e) =
w(e):

y(i) + y(j)− z(e) =
1

α
(max price(i) + max price(j)

− (max price(i)− price(i, e))

=
1

α
(max price(j) + price(i, e))

≤ 1

α
(w(e) + w(e)) ≤ 1

2
(2w(e)) ≤ we. (7.14)

The last line follows because max price(j) ≤ w(e), since j is saturated and
e is not a covering edge for j.

We now consider the second scenario when e is not part of the cover. In
this case excess(e) = 0, and the left side of the constraint becomes

1

α
· (max price(i) + max price(j)).

Without loss of generality assume i was saturated first and then j. This
establishes that max price(i) ≤ w(e) and max price(j) ≤ w(e) since i and j
were covered by an edge with lower weight than that of e. We have

1

α
· (max price(i) + max price(j)) ≤ 1

2
· 2w(e) ≤ w(e).

We combine these analyses as follows:∑
e∈C

w(e)

=
∑
v∈V

bv ·max price(v)−
∑
e∈E

excess(e) (from (7.9))

= α ·
(∑
v∈V

b(v)y(v)−
∑
e∈E

z(e)

)
(replacing max price and excess)

= α · ECdual ≤ α · ECLP ≤ α · EC ∗ (from (7.6)).

As in the 3/2-approximation algorithm we can also show the tightness
of the approximation ratio of the b-Nearest Neighbour algorithm. We
generate a graph with n vertices, where n is odd, as follows. The vertex v0
is connected to all other vertices v1 . . . v(n−1). Each vertex vi for odd i > 0
is connected with v(i+1). All edges have the same weight x. We let b = 1
for every vertex. An example with n = 9 is shown in Figure 7.3.

The optimal edge cover for this example would have weight 5w, consisting
of the four edges not incident on v0 and one edge incident on v0. But the
b-Nearest Neighbour algorithm could produce an edge cover with weight
8w by choosing all edges incident on v0. For a graph with n vertices, the
optimal weight would be 1

2(n− 1) ∗w+w but the b-Nearest Neighbour

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

606 A. Pothen, S. M. Ferdous and F. Manne

v0

v1

v3

v5

v7

v2

v4v6

v8 w

w

w

w

w

w

w

w

w

w

w

w

Figure 7.3. A tight example for the b-Nearest Neighbour algorithm.

algorithm could produce an edge cover with weight (n − 1) ∗ w. Thus the
approximation ratio is (2(n− 1))/(n+ 1), which as n→∞ is 2.

Lemma 7.7. The time complexity of the b-Nearest Neighbour algo-
rithm is O(m log ∆).

Proof. We can sort the adjacency list of a vertex v inO(deg (v) log(deg (v)))
time. Summing over all the vertices we obtain O(m log ∆).

The time complexity can be improved to O(m) if we use the worst-case
linear time selection algorithm as described in Cormen, Leiserson, Rivest
and Stein (2009) to find the bith smallest element in the adjacency list of a
vertex.

7.6. ∆-approximation algorithm

Here we present another algorithm based on linear programming duality for
b-edge cover, with an approximation ratio of ∆, which is larger than the ra-
tios 3/2 and 2 for the algorithms we have considered thus far. We do this for
several reasons. First, the worst-case approximation ratio does not always
determine how well an algorithm does practically. Second, the analysis of
this algorithm enables us to present a different technique for designing a
primal–dual algorithm. This algorithm is derived from an algorithm for set
multicover designed by Hall and Hochbaum (1986), which leads to a better
approximation ratio for vertex cover.

Recall that due to weak duality and LP relaxation, the objective value of
any feasible solution to the dual problem in (7.3) is a lower bound for the
optimum b-edge cover in (7.1). But in general a dual feasible solution does

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 607

not guarantee an approximation ratio. However, there exists a particular
dual feasible solution, a maximal dual feasible solution, whose objective
value provides a bound on the optimum value. A dual feasible solution
(denoted ȳ and z̄) is maximal if it satisfies the following three properties.

I There does not exist a feasible solution(y, z) with y ≥ ȳ, z ≥ z̄ and∑
v∈V

b(v)y(v)−
∑
e∈E

z(e) >
∑
v∈V

b(v)ȳ(v)−
∑
e∈E

z̄(e).

II z̄(e) = 0 whenever ȳ(i) + ȳ(j) < w(e).

III ∑
v∈V

ȳ(v) ≤
∑
v∈V

b(v)ȳ(v)−
∑
e∈E

z̄(e).

The proposed algorithm is as follows.

(1) Find a maximal dual feasible solution (ȳ,z̄).

(2) Output the cover C = {e = (i, j)|ȳ(i) + ȳ(j)− z̄(e) = w(e)}.

We first show that such an algorithm would provide a ∆-approximation.

Lemma 7.8. The algorithm is a ∆-approximation algorithm for b-edge
cover.

Proof. We first establish that C is a feasible cover. For the sake of contra-
diction, assume that C is not a feasible cover; hence there exists a vertex v
that is not covered by at least b(v) edges. Let

ε = min
e∈δ(v)

{εe = w(e)− (ȳ(i) + ȳ(j)− z̄(e)) and εe > 0}.

We show that the value of ε is well-defined. According to our assumption at
most b(v)− 1 edges incident on v are included in C. Since ȳ and z̄ are dual
feasible, there must be at least one edge e where ȳ(i) + ȳ(j)− z̄(e) < w(e),
equivalently w(e) − (ȳ(i) + ȳ(j) − z̄(e)) > 0. We set ȳ(v)′ = ȳ(v) + ε, and
z̄(e)′ = z̄(e) + ε, for edges e ∈ δ(v) and e ∈ C. The variables(ȳ′, z̄′) are dual
feasible. But this contradicts the maximality (property I) of ȳ, z̄, since ȳ′

increases the first term of the dual objective value by at least b(v)ε, and z̄′

increases the second term by at most (b(v) − 1)ε, with a net increase of at
least ε. This establishes that C is a feasible cover.

Now since (ȳ, z̄) is a dual feasible solution, the weak duality theorem
applies: ∑

v∈V
b(v)ȳ(v)−

∑
e∈E

z̄(e) ≤ ECLP ≤ EC ∗. (7.15)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

608 A. Pothen, S. M. Ferdous and F. Manne

Algorithm 16 Dual Feasible(G = (V,E,w, b))

1: Initialize yv = 0 and ze = 0, for all v ∈ V and e ∈ E
2: Assign w′(e) = w(e), for all e ∈ E
3: while there exists an unsaturated vertex v ∈ V do
4: f = arg min{w′(e) : e ∈ δ(v)− C}
5: y(v) = y(v) + w′(f); C = C ∪ {f}
6: for e ∈ δ(v) do
7: w′(e) = w′(e)− w′(f)
8: if w′(e) < 0 then
9: z(e) = z(e)− w′(e)

10: w′(e) = 0
11: end if
12: end for
13: decrease r(v) by 1
14: if r(v) = 0 then
15: Mark v as saturated
16: end if
17: end while

Using property III, we obtain∑
v∈V

ȳ(v) ≤ EC ∗. (7.16)

From the construction of the cover we have∑
e∈C

w(e) +
∑
e∈C

z̄(e) =
∑

e=(i,j)∈C

ȳ(i) + ȳ(j)

=
∑
v∈V

∑
e∈(δ(v)∩C)

ȳ(v)

≤
∑
v∈V
|δ(v)|ȳ(v)

≤ ∆
∑
v∈V

ȳ(v) ≤ ∆ · EC ∗. (7.17)

In the last line we used (7.16). Hence we have established the ∆-approxim-
ation ratio for the proposed algorithm.

Next our goal is to design an algorithm that produces a maximal feasible
dual solution. One such algorithm is shown in Algorithm 16.

The algorithm first initializes the dual variables (y, z) to zero. For each
edge it maintains a variable, the residual weight w′. This is initialized by
the weight of the edge. In each iteration, it picks an unsaturated vertex, v,
and then it finds an adjacent edge f incident to v with minimum residual

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 609

weight. Upon finding the edge f , it adds f to the cover, adds w′(f) to
y(v), and subtracts w′(f) from the residual weights of all edges incident on
v. Note that the iteration in line 6 of the algorithm goes over all edges
incident on v, including f and other edges that may have been added to the
cover in earlier iterations. If the weight of any residual edge (say e) becomes
negative, it subtracts w′(e) from z(e) (thus the value of z(e) increases), and
sets w′(e) to zero. It then decreases the requirement r(v) by 1, and marks
v as saturated if r(v) = 0.

The output of the algorithm is the set C. We now show that the dual
vectors derived are maximal and satisfy the three properties.

Claim 7.9. The variables y and z are non-negative.

Proof. The initial edge weights are non-negative, and the algorithm main-
tains the residual weight w′ to be non-negative. The variable y is updated
by adding w′ to it, and z(e) is updated by subtracting w′(e) when its value
is negative, and hence these variables are non-negative as well.

Claim 7.10. All edges e in the cover C satisfy y(i) + y(j)− z(e) = w(e).

Proof. Let i be a vertex at some iteration of the algorithm and f = (i, j) be
an available edge with minimum residual weight w′(f). We have w′(f) ≥ 0
from the previous claim, and then we add w′(f) to y(i). In the for loop over
edges, we now subtract w′(f) from all edges incident on i, including the edge
f . Hence w′(f) is set to zero. Every time the weight of an edge is decreased
by some amount in the algorithm, it is transferred to the y(.)-variable of
one of its endpoints. Hence at this point in the algorithm, y(i) + y(j) −
z(e) = w(f), since z(f) is zero as long as w′(f) is non-negative. In future
iterations involving other available edges incident on i or j, the invariant
y(i) + y(j)− z(e) = w(e) is maintained by increasing the value of z(e).

Claim 7.11. The inequality y(i)+y(j)−z(e) ≤ w(e) holds for all e ∈ E\C.

Proof. Since w′(e) ≥ 0 for the edges not in the cover, the two endpoints of
such edges have absorbed a weight of at most w(e). Note that in this case
z(e) = 0.

So (y, z) is a dual feasible solution, but we need to show that it is also
maximal.

Lemma 7.12. The dual vector (y, z) of the Dual Feasible algorithm is
maximal.

Proof. (I) Each vertex v is covered by b(v) edges for which the dual con-
straints y(v) + y(u)− z((v, u) = w(v, u) are tight (according to Claim 7.9).
Suppose we increase a dual variable y(v) by a non-negative amount ε. Now
at least b(v) constraints (those corresponding to the covering edges of v)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

610 A. Pothen, S. M. Ferdous and F. Manne

are violated. (We say at least, since if there is an edge incident on v that
is not a covering edge with residual weight less than ε, its constraint is also
violated.) To compensate for the constraint violations, we need to add ε to
at least b(v) elements of z. So the increase in objective function is exactly
b(v)ε while the decrease is at least b(v)ε. Hence the objective function value
for (y, z) is not greater than that of (ȳ, z̄).

(II) According to the construction, the residual weight w′(e) ≥ 0, for all
e ∈ E \ C. That means for such edges e we have y(i) + y(j) ≤ w(e). Since
w′(e) ≥ 0, line 8 of the algorithm will never be satisfied for e, resulting in
z(e) = 0.

(III) Since z(e) = 0, for all e ∈ E \ C, it suffices to show that∑
e∈C

z(e) ≤
∑
v∈V

(b(v)− 1) y(v).

We will prove this using induction on the number of iterations in the algo-
rithm. Let y(t) and z(t) denote the variable y and z after t iterations, and
let the number of iterations in the algorithm be denoted by T . We show
that the inequality above is true in every iteration:∑

e∈C
z(e)(t) ≤

∑
v∈V

(b(v)− 1) y(v)(t), t = 1, . . . , T.

For t = 1, the left side is zero since the w′(e) values for all the edges
are non-negative after the first iteration, and the right side is ≥ 0, since
we must have identified an edge incident on a vertex v with the minimum
weight and added its weight to y(v). Note that if b(v) equals 1 the right
side is zero, and otherwise it is greater than zero. We inductively assume
that the inequality holds for t = 1, . . . , k − 1.

Denote the vertex selected at the kth iteration by v, and let f be the
minimum weight edge incident on v with weight w′(f). Then the right-
hand side of the displayed equation increases by (b(v)− 1)w′(f). Now this
could lead to increase in some z(e)k, where e is incident on v. When f is
included in the cover, there are at most (b(v) − 1) covering edges already
incident on the vertex v. In the current iteration, only the z(.) values of
these edges can increase, and hence the net increase on the left side is at
most (b(v) − 1)w′(f). Hence the inequality is preserved at the end of this
iteration.

We can show a tight example of the ∆-approximation algorithm by con-
sidering the graph in Figure 7.3 with different weights as follows. The
weights of the edges (vi, v(i+1)), where i = 1 · · · 7, are changed to 2ε/∆.
Other weights remain the same. The maximum degree in this graph is
n − 1. Assuming b = 1 for every vertex, the optimal cover weight is
∆/2 ∗ (2ε/∆) + w = ε+ w, whereas if the Dual Feasible algorithm picks

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 611

Table 7.1. Structural properties of our graphs listed in increasing order of edges.

Problems Vertices Edges Mean degree

Fault 639 616 923 5 715 102 19
bone010 986 703 7 861 302 16
Serena 1 382 121 13 716 976 20
mouse gene 43 126 14 461 095 671
dielFilterV3real 1 102 824 21 583 469 39
Flan 1565 1 564 794 22 636 872 29
kron g500-logn21 1 544 087 91 040 932 118
hollywood-2011 1 985 306 114 492 816 115
G500 21 1 598 722 118 594 475 148
SSA21 2 089 808 123 097 397 118
eu-2015 10 972 981 257 659 403 47

the first vertex to be v0, the weight of the edge cover could be ∆x. Taking
the ratio we have (∆w)/(ε+ w). As ε→ 0, the ratio approaches ∆.

Lemma 7.13. The time complexity of the Dual Feasible algorithm is
O(β m).

Proof. A vertex v can be selected at most b(v) times. When it is selected
it has to find the edge with minimum residual weight, which can be found
in O(deg(v)) time. Summing over all vertices we get

∑
v∈V b(v) · deg(v) =

O(β m).

7.7. Computational results

7.7.1. Experimental set-up

All the experiments were conducted on a Purdue community cluster com-
puter called Rice, described in Section 3.3.

Our test set consists of both real-world and synthetic graphs shown in
Table 7.1. We generated two classes of RMAT graphs: (a) G500, represent-
ing graphs with skewed degree distributions from the Graph 500 benchmark
(Murphy, Wheeler, Barrett and Ang 2010), and (b) SSCA, from the HPCS
Scalable Synthetic Compact Applications graph analysis (SSCA#2) bench-
mark. We used the following parameter settings: (a) a = 0.57, b = c = 0.19
and d = 0.05 for G500, and (b) a = 0.6 and b = c = d = 0.4/3 for
SSCA. Additionally we consider seven problems taken from the SuiteSparse
Matrix Collection (Davis and Hu 2011) covering application areas such as
medical science, structural engineering and sensor data. We also have a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

612 A. Pothen, S. M. Ferdous and F. Manne

Table 7.2. Comparison of weights of edge covers computed by approximation algo-
rithms with respect to the exact algorithm.

Problems OPT weight Distance from optimality (%)

PD NN Match

Fault 639 2 475 175 3.21 5.75 1.07
bone010 4 500 059 3.20 5.73 1.04
Serena 5 477 688 3.21 5.62 1.01
mouse gene 188 517 1.94 3.86 1.24
dielFilterV3real 3 007 336 2.80 4.77 0.82
Flan 1565 4 362 155 3.17 5.62 1.15
kron g500-logn21 26 301 787 0.12 0.18 0.01
hollywood-2011 9 310 300 1.87 3.69 0.45
G500 21 25 624 663 0.11 0.16 0.01
SSA21 8 243 419 2.85 4.05 0.66
eu-2015 218 514 387 0.49 0.89 0.03

Geometric mean 1.32 2.25 0.28

large web-crawl graph (eu-2015) (Boldi, Marino, Santini and Vigna 2014)
and a movie-interaction network (hollywood-2011) (Boldi and Vigna 2004).

All reported results are the average of five runs on graph with random
edge weights. For edge cover the uniform random weights are in the range
[1 100]. Since LEDA works only with integer weights, the real-valued weights
are then rounded to their nearest integers. For the b-edge cover experiment,
the uniform random weights are chosen from the range [1 1000].

7.7.2. Edge cover results

We compare four algorithms: the exact algorithm that computes the min-
imum weight of an edge cover using the weight transformation described
in Section 6, the Nearest Neighbour algorithm (NN), the 3/2-approx-
imation Primal Dual algorithm (PD), and a 1/2-approximate maximum
weight matching algorithm that with the approximation-preserving weight
transformation obtains a 3/2-approximation minimum weight edge cover
(Match). We use LEDA’s maximum weight matching code to compute the
maximum matching with transformed weights, and the Suitor algorithm
to compute the approximate matching. We removed redundant edges from
the edge covers computed by these algorithms.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 613

Table 7.3. Relative performance of run times of approximation algorithms with
respect to the exact algorithm for edge cover.

Problems Time (s) Relative performance

Exact algorithm PD NN Match

Fault 639 8.78 36.61 73.32 44.23
bone010 13.37 37.70 77.23 43.97
Serena 21.48 36.58 74.27 43.28
mouse gene 14.39 35.74 69.13 40.79
dielFilterV3real 27.30 34.78 69.05 40.74
Flan 1565 27.20 32.91 63.50 39.85
kron g500-logn21 147.89 37.92 78.83 43.96
hollywood-2011 122.78 33.88 65.43 39.84
G500 21 182.00 36.95 77.53 41.99
SSA21 233.71 40.62 87.41 46.00
eu-2015 408.40 41.22 85.88 48.84

Geometric mean 36.73 74.33 42.97

In Table 7.2 we report the minimum weight computed by the exact algo-
rithm, and the distance to optimality of the other algorithms, computed
as (approx − opt)/opt ∗ 100, where opt and approx are weights from the
optimal and approximation algorithms, respectively. Note that all three
algorithms perform much better than their worst-case ratios (3/2 for PD
and Match; 2 for the NN algorithm). The Match algorithm is the best
performer, followed by PD and then NN.

In Table 7.3 we compare the run times of the algorithms. We report the
time taken by the exact algorithm, and report the relative performance of
the approximation algorithms as the ratio of the run time of the exact to
that of the approximation algorithm. The larger the relative performance,
the faster the algorithm. Note that the NN algorithm is the fastest, followed
by the Match algorithm and then the PD algorithm. But the run times of
the approximation algorithms are within a factor of two of each other.

7.7.3. b-edge cover results

We do not have an exact algorithm to compare the approximation algo-
rithms against since the weight transformation reduction does not work for
b-edge cover. We compare the Primal Dual algorithm (PD), the Lazy

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

614 A. Pothen, S. M. Ferdous and F. Manne

Table 7.4. Weight of b-edge covers computed by the Primal Dual algorithm.
‘Increase’ is the percentage of increase in weight of edge covers computed by the
b-Nearest Neighbour algorithm with respect to those from the Primal Dual
algorithm.

Problem Primal Dual Increase (%)

Original Remove Original Remove
redund. redund.

bone010 3.93E+09 3.93E+09 0.00 0.00
Fault 639 2.86E+09 2.86E+09 0.00 0.00
Serena 6.85E+09 6.84E+09 0.07 0.00
Flan 1565 1.06E+10 1.04E+10 2.14 0.12
G500 21 6.78E+09 6.62E+09 2.20 0.20
kron g500-logn21 6.00E+09 5.86E+09 3.02 0.36
eu-2015 3.28E+10 3.22E+10 3.63 0.28
mouse gene 1.11E+08 1.06E+08 5.29 0.45
hollywood-2011 9.80E+09 9.53E+09 7.21 1.65
dielFilterV3real 7.47E+09 7.30E+09 10.50 3.03
SSA21 9.26E+09 8.59E+09 12.88 0.90

Geometric mean 4.77 0.51

Greedy algorithm (LG) and the b-Nearest Neighbour algorithm (bNN).
Both the PD and LG algorithms are 3/2-approximate and compute the
same b-edge cover, while bNN is 2-approximate. In Table 7.4 we report the
weights of the b-edge covers. We include the weight computed by the ori-
ginal algorithm, and then the weight obtained by removing redundant edges.
The last two columns show the percentage difference in weights between the
bNN and PD algorithms. The results show that the PD algorithm computes
smaller weights for the edge cover. The difference in weights between the
two original algorithms can be large, up to 13% for these problems, with
a geometric mean of about 5%. However, after removing redundant edges,
this difference narrows to at most 3%. This implies that more redundant
edges are removed from the bNN algorithm.

The run times of the algorithms are plotted in Figure 7.4 as the ratio of
the run time of the LG algorithm to the run time of the second algorithm.
Values higher than one for an algorithm mean that the algorithm is faster
than LG. Note that in geometric mean, the PD algorithm is twice as fast
as LG, and the bNN algorithm is about six times as fast as LG.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 615

 0

 2

 4

 6

 8

 10

 12

 14

S
er

en
a

S
S
A

2
1

Fa
u
lt
_6

3
9

kr
on

_g
5
0
0

-l
og

n
2
1

G
5
0
0
_2

1

b
on

e0
1
0

d
ie

lF
ilt

er
V

3
re

al

Fl
an

_1
5
6
5

m
ou

se
_g

en
e

h
ol

ly
w

oo
d

-2
0
1
1

eu
-2

0
1
5

G
eo

.
M

ea
n

R
e
l.
 P

e
rf

.

Primal-dual
bNN

Figure 7.4. Relative performance of run times of the Primal Dual and b-Nearest
Neighbour algorithms for b-edge cover with respect to the Lazy Greedy algo-
rithm.

The ∆-approximation algorithm was implemented by Khan and Pothen
(2016) and compared with the LSE algorithm, which has an approximation
ratio of 3/2. The performance of the latter algorithm was highly sensitive
to the order in which the vertices are processed, for both weights and run
times. Generally the LSE algorithm computed lower weights and it was
also faster.

Several of the approximation algorithms for the b-edge cover problem
have been implemented on parallel computers. The LSE algorithm and the
matching complement edge cover (MCE) algorithm have been imple-
mented on shared-memory parallel machines: an IBM Power-8 with 764
cores and an Intel Xeon with 36 cores (Khan et al. 2018b). The Primal
Dual 3/2-approximation algorithm has been implemented by us on mul-
tiple cores of an Intel Xeon (Ferdous and Pothen, unpublished). The MCE
algorithm has also been implemented on 8192 cores of a distributed-memory
parallel computer with good speedups (Khan et al. 2018a), and it has been
used to solve the adaptive anonymity problem, which we discuss in the next
subsection.

Software for exact (based on the weight transformation to a matching
problem) and approximation algorithms for edge cover and b-edge cover
(Greedy, Lazy Greedy, b-Nearest Neighbour and Primal Dual
algorithms) will be included at https://github.com/CSCsw/EdgeCover. Code

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

616 A. Pothen, S. M. Ferdous and F. Manne

for the b-Suitor algorithm from which the MCE b-edge cover could be
computed is available at https://github.com/Exa-Graph.

7.8. Applications of b-edge cover

A widely used application of b-edge cover is in computing b-Nearest Neigh-
bour graphs (bNN graphs) to construct sparse graphs out of noisy data,
although practitioners do not seem to know about the relationship of this
construction to the b-edge cover problem. Subramanya and Talukdar (2014)
provide a recent discussion of the bNN graph construction in semi-supervised
machine learning, and compare it with other methods such as b-matching
(Jebara et al. 2009). (In the literature this is called the k-nearest neighbour
graph.) We have shown here that the minimum weight b-edge cover formu-
lation leads to a more general formulation where we are not constrained to
use an identical value of b(v) for all vertices. This is practically important
since choosing b(v) adaptively, e.g. to be proportional to the degree of v,
could lead to a graph that more faithfully represents the data. Furthermore,
linking the b-nearest neighbour problem to the b-edge cover problem leads
to several 3/2-approximation algorithms, while the bNN graph construction
leads to a 2-approximation algorithm. We have also shown that the bNN
graph construction leads to the inclusion of many redundant edges, which
could be removed to reduce the weight of the edge cover, although the worst-
case approximation ratio is not reduced by this technique. Use of the bNN
graph construction is seen experimentally to lead to highly skewed degree
distributions, since several neighbours of a vertex v could include it among
its nearest neighbours, whereas the other b-edge cover algorithms provide
better control of the degree distribution. This can influence the quality of
the classification results obtained in semi-supervised machine learning.

Jebara et al. (2009) have proposed the use of b-matching to solve this
problem, using an exact belief propagation-based algorithm for comput-
ing perfect b-matchings from a complete graph that represents the data.
The use of an exact algorithm makes this approach quite expensive relative
to using a 1/2-approximation algorithm to compute the b-matching. Fur-
thermore, working with a complete graph of the data makes the algorithm
expensive for large data, whereas with a sparse representation of the data,
the b-edge cover formulation ensures that each vertex v has at least b(v)
neighbours in the constructed graph (the b-matching only ensures at most
b(v) neighbours).

We discuss a problem in data privacy, adaptive anonymity, that stimu-
lated our work on the b-edge cover problem.

Table 7.5 shows a small example to illustrate the adaptive anonymity
problem. The top matrix contains binary data measured on six features
for six individuals. Each individual is willing to permit their data to be

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 617

Table 7.5. A small example illustrating adaptive anonymity. From top to bottom:
original input, dissimilarity matrix (Hamming distances) and anonymized output.

Instances f1 f2 f3 f4 f5 f6

U1 1 0 1 0 1 0
U2 1 1 1 1 1 0
U3 0 1 0 1 0 1
U4 0 0 0 0 0 1
U5 1 1 0 0 0 0
U6 1 1 0 0 0 1

S U1 U2 U3 U4 U5 U6

U1 – 2 6 4 3 4
U2 – 4 6 3 4
U3 – 2 4 2
U4 – 3 2
U5 – 1
U6 –

Instances f1 f2 f3 f4 f5 f6

U1 1 * 1 * 1 0
U2 1 * 1 * 1 0

U3 0 * 0 * 0 1
U4 0 * 0 * 0 1

U5 1 1 0 0 0 *
U6 1 1 0 0 0 *

published provided each one is confused with at least one other person in the
database. The idea is that a ‘∗’ could correspond to a 0 or a 1. The problem
is to mask the least number of data items with ‘∗’ so that the privacy
requirement of every individual is met. The matrix in the middle shows
the Hamming distances between pairs of individuals, which is a measure
of dissimilarity that indicates in how many entries the data of the two
individuals differ. Now we compute a minimum weight 1-edge cover of the
complete graph corresponding to the dissimilarity matrix, which includes

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

618 A. Pothen, S. M. Ferdous and F. Manne

the edges (1, 2), (3, 4) and (5, 6). Finally, we pair individuals using this
edge cover, and introduce ‘∗’s in the columns where these pairs of individuals
differ. Note that the weight of the edge cover is five, and there are ten ‘∗’s in
the anonymized output matrix that could be published for machine learning
purposes.

More formally, in adaptive anonymity, each individual v expresses a re-
quired level of privacy, to be confused with b(v) − 1 other individuals. We
are given a data set X ∈ Zn×f , where n is the number of individuals and f
is the number of features. Each row xv ∈ Zf of X is a contribution of the
individual v to the data set and consists of f discrete features. A feature
might be race, age, height, weight, income bracket, etc., but not unique
identifiers such as social security number. A vector b of length n, where an
element b(v) is a privacy requirement of the vth individual, is also given.
The value b(v) specifies that the data of the vth user must be indistinguish-
able from that of b(v) − 1 other users. The output of the algorithm is an
anonymized data set Y ∈ (Z∪ {∗})n×f , where the ‘∗’ symbol indicates that
a particular feature has been masked.

The adaptive anonymity problem is NP-hard, but Choromanski et al.
(2013) proposed an algorithm that finds a good-quality approximate solu-
tion. The approximate solution comes from the observation that if we group
similar instances together (with respect to their corresponding features)
then we need to hide fewer features. The algorithm is a variational op-
timization method which iterates until some convergence criterion is met
or a maximum number of iterations is reached. First, the algorithm cre-
ates a complete graph of n vertices corresponding to instances and a weight
multiplier matrix initialized to all ones. Within an iteration, the algorithm
assigns the weight of an edge between two vertices based on some dissim-
ilarity measure between the two instances, multiplied by the weight multi-
plier. Next, the algorithm performs a grouping step based on the current
weight assignment, and then the weight multipliers are adjusted based on
the grouping. Thus at each iteration one needs to solve the grouping step.

Choromanski et al. (2013) used a perfect b-matching of minimum weight
to group similar instances together. This limited the size of the instances
they could solve to a few thousand individuals, since the exact b-matching
algorithm has O(b(V)m log n) time complexity. Khan et al. (2018a) have
shown that one could instead use a minimum weight b-edge cover formula-
tion, and then use an approximation algorithm to compute the b-edge cover.
This results in a 2β-approximation algorithm for minimizing the number of
stars in the anonymized data, where β is the maximum value of the privacy
requirements over individuals. The factor 2 comes from the choice of the
algorithm used to compute the b-edge cover, and it could be reduced to 3/2
with the Greedy or the Primal Dual algorithm. These authors computed
the b-edge cover by taking the complement of a 1/2-approximate b-matching,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 619

using the b-Suitor algorithm. This algorithm was implemented efficiently
on shared-memory and distributed-memory parallel computers, to provide
the first reported parallel solutions for the adaptive anonymity problem.
The work (total number of operations) in the distributed-memory parallel
algorithm is O(b(V)m), and its depth is O(log ∆ logm). This algorithm
also reduced the memory required to solve the problem from quadratic to
linear in the number of individuals, since for each row in the dissimilar-
ity matrix we need to store only the top k(v) values (where k(v) is some
multiple of b(v)) to compute the maximum weight b-matching. If these do
not suffice to obtain the b-matching, then the elements that had been pro-
cessed could be discarded, and an additional set of k(v) elements could be
computed. The parallel algorithm solved an anonymity problem involving
Medicare/Medicaid physician billing data with more than 700 000 individu-
als and 500 features on a distributed-memory computer with 8192 cores in
four minutes. This represents an increase in problem size by three orders of
magnitude over the earlier approaches.

8. Other approximation algorithms in CSC

We discuss two other classical problems in CSC where approximation algo-
rithms have been designed or inapproximability results obtained.

8.1. Graph colouring

The graph colouring problem assigns the fewest colours to the vertices of a
graph such that adjacent vertices receive different colours. Formally, we find
a function c : V 7→ N such that for every edge (u, v) we have c(u) 6= c(v),
and c uses the minimum number of colours. The chromatic number of a
graph G is the minimum number of colours needed to colour it. Computing
the chromatic number of a graph is an NP-hard problem. Furthermore, an
inapproximability result due to Feige and Kilian (1998) states that for any
ε > 0 no polynomial time algorithm can approximate the chromatic number
to within a factor of n1−ε unless P = NP.

In CSC, several variants of graph colouring problems are of interest in
computing sparse Jacobians and Hessians efficiently. Despite the pessimistic
approximability result for colouring, in many contexts in CSC (such as finite
element methods for solving partial differential equations) the graphs that
need to be coloured are bounded in degree. Any graph can be coloured in
at most ∆ + 1 colours, and hence the colouring problem is easy for the class
of bounded degree graphs. An even tighter upper bound is the colouring
number, which is obtained from an ordering computed by iteratively deleting
vertices of minimum degree in the graph, updating degrees, and continuing
until the graph is empty. (This is the same algorithm that computes the
maximum core of a graph.) The maximum value of the minimum degree

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

620 A. Pothen, S. M. Ferdous and F. Manne

observed during this process is the colouring number. By colouring the
graph in the reverse order in which the vertices are deleted from the graph,
one can colour the graph in this many colours. A more detailed discussion
is available in Gebremedhin, Manne and Pothen (2005).

For Erdős–Rényi graphs with constant average degree, the chromatic
number can be precisely computed, and the greedy colouring algorithm can
be shown to colour the graph in at most twice this number of colours. Let
G(n, d/n) denote an Erdős–Rényi graph on n vertices with the probability
of an edge equal to d/n. We say that a property of a random graph on
n vertices An holds asymptotically almost surely (a.a.s.) if the probability
that An is true satisfies P(An)→ 1 as n→∞. Achlioptas and Naor (2005)
proved the following result (see also Kang and McDiarmid 2015).

Theorem 8.1. Given d > 0, let kd be the least integer k for which d <
2(k − 1) ln(k − 1). Then χ(G(n, d/n)) is kd − 1 or kd a.a.s. If d > (2kd −
3) ln(kd − 1), then χ(G(n, d/n)) = kd a.a.s.

A colouring algorithm that finds maximal independent sets and colours
them greedily can be shown to use at most twice the number of colours as
the chromatic number (McDiarmid 1984). This paper discusses why this is
simultaneously both a good and a bad result.

Now we turn to what is known about approximation algorithms for some
of these colouring problems.

A distance-2 colouring of a graph G = (V,E) is a colouring such that
a vertex receives a colour distinct from any of its neighbours at distance
2 or less. This variant arises in computing Hessians if one does not take
into account the symmetry of the graph. McCormick (1983) described a
simple algorithm that computes an O(

√
n)-approximation to the distance-2

chromatic number. Two other colouring problems that occur in Hessian
computation where we need to compute only one among the two elements
Hij or Hji for i 6= j, due to the symmetry of the Hessian, are star colouring
and acyclic colouring. In star colouring, adjacent vertices receive distinct
colours, and also every path on four vertices (P4) should receive at least
three colours. Thus two-coloured subgraphs should be stars. In acyclic
colouring, adjacent vertices should receive distinct colours, and every cycle
should receive at least three colours. Thus two-coloured subgraphs should
be forests. ZPP is the class of all problems solvable in zero error probabil-
istic time. Gebremedhin, Tarafdar, Manne and Pothen (2007) showed that
the star chromatic number and the acyclic chromatic number cannot be
approximated to within a factor of n(1/3−ε) unless NP ⊆ ZPP.

Bicolouring problems arise when we evaluate a Jacobian matrix using
both its rows and columns. In this context, we do not need to evaluate
every row and every column, since each non-zero in the Jacobian could be
computed from its row or its column. Hence we have a colouring problem in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 621

which a vertex u could be assigned the colour 0 to indicate that u will not be
used to compute any non-zeros in that row or column. The star bicolouring
of a bipartite graph G = (V1, V2, E) is a function c : {V1 ∪ V2} 7→ N ∪ {0}
such that

(1) c(vi) 6= c(vj) if (i, j) ∈ E;

(2) the set of non-zero colours (set of ‘true’ colours) of V1 is disjoint from
the set of non-zero colours of V2;

(3) two vertices vi and vk adjacent to a vertex vj with c(vj) = 0 receive
distinct colours; and

(4) every path on four vertices receives at least three colours.

The acyclic bicolouring problem satisfies all the conditions of the star bicol-
ouring problem, except for the last condition, which is replaced with: every
cycle receives at least three colours.

Juedes and Jones (2012) have designed an approximation algorithm for
the star bicolouring problem. The algorithm computes distance-2 independ-
ent sets of vertices (from either V1 or V2) containing a vertex of maximum
degree in the current graph using a greedy algorithm, and then assigns
them all one colour. The choice of independent sets from V1 or V2 is done
based on the maximum degree and ratios of |Vi|/∆. They show that this
algorithm has O(n2/3) approximation ratio and that its time complexity
is O(m2/n1/3). Since every star bicolouring is also an acyclic bicolouring,
the approximation result holds for the latter problem as well. The authors
have also implemented their algorithms, and showed on graphs with several
hundred vertices and thousands of edges that the algorithm is competitive
in run time with heuristic colouring algorithms that have been designed for
star bicolouring.

8.2. Minimizing fill in sparse Cholesky factorization

The minimum fill problem is one of the most basic problems in the area
of sparse matrix computations. Given a sparse, symmetric positive definite
matrix A, we wish to permute its rows and columns symmetrically and
compute the Cholesky factors of the permuted matrix

PAP T = LLT ,

where P is a permutation matrix and L is the lower triangular Cholesky
factor, such that the number of non-zeros in L are minimized. A fill element
is a matrix element Lij 6= 0 such that Aij = 0.

In a graph model, we consider the undirected adjacency graph of A, and
eliminate its vertices one by one. To eliminate a vertex, we add edges
to make all of its neighbours a clique, and then delete the vertex and all

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

622 A. Pothen, S. M. Ferdous and F. Manne

edges incident on it. The problem is to find an ordering for eliminating the
vertices that minimizes the edges added in this process, i.e. the fill edges.
This problem was proved to be NP-complete by Yannakakis (1981). It is
well known that the graph of the Cholesky factor, the filled graph, is a
chordal graph.

Nested dissection, proposed by George (1973) is a technique for solving
this problem using the divide and conquer paradigm. It works by finding
a vertex separator that divides the graph into roughly two equal-sized (in
terms of vertices) subgraphs. The two subgraphs are ordered first followed
by the separator. One recurses on the subgraphs to find separators in the
subgraphs, and orders them with this process. For planar graphs there exist
separators of size O(n1/2), and the fill can be bounded by O(n log n); for
graphs (finite element meshes) that can be embedded in three dimensions
with good aspect ratios, the separator size is O(n2/3), and the fill is O(n2).
Another heuristic which is widely used is the minimum degree algorithm
and its many variants.

Unfortunately we cannot prove how close to optimum the solutions from
these heuristic fill reduction algorithms are, although they obtained less
fill than an approximation algorithm designed by Agrawal, Klein and Ravi
(1993) for many matrices. These authors obtained an algorithm with ap-
proximation ratio O(n1/2 log3.5 n) for the total number of edges in the filled
graph. (Their objective function was the sum of the number of edges in
the original graph and the fill edges.) Natanzon, Shamir and Sharan (2000)
obtained an approximation algorithm for minimizing the fill with approxim-
ation ratio eight times the minimum fill size. A polynomial time approxima-
tion scheme (PTAS) is a polynomial time algorithm that takes a parameter
ε > 0 and produces an approximate solution for a minimization problem
with approximation ratio (1+ ε). Recently, Cao and Sandeep (2017) proved
that if the problems of minimizing the fill or the total number of edges in
the filled graph has a PTAS, then P = NP.

9. Conclusions

We have surveyed the design and implementation of approximation algo-
rithms for several matching and edge cover problems and their applications
in combinatorial scientific computing. Our interest is in algorithms that
could be implemented to obtain high performance on modern processor ar-
chitectures, including serial and parallel computers, both shared-memory
and distributed-memory machines. We have viewed approximation as a
paradigm for designing parallel algorithms (Khan et al. 2018b).

The paradigm of designing approximation algorithms for parallelism has
been considered in the theoretical computer science community for vertex
and set cover problems by Khuller, Vishkin and Young (1994), and for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 623

facility location, max cut, set cover and low stretch spanning trees, by Blel-
loch, Peng and Tangwongsan (2011) and Tangwongsan (2011). The idea
underlying many of these parallel algorithms is that a greedy algorithm
chooses a most cost-effective element in each iteration, and by allowing a
slack, a factor of (1+ε), more elements can be selected at the cost of a slightly
worse approximation ratio. These algorithms have poly-logarithmic depth,
and although some of them have linear work requirements, there are few
parallel implementations that we know of. Blelloch et al. (2012) have com-
puted a maximal cardinality matching (which would be a 1/2-approximate
algorithm) in parallel.

For matching problems we have discussed new approximation algorithms
for maximum cardinality matching. For edge-weighted matching, we have
described 1/2-approximation algorithms that employ different paradigms:
greedy, path-growing, and proposals (related to the stable matching prob-
lem). We have considered (2/3 − ε)-approximation algorithms for this
problem as well. We have discussed 1/2-approximation algorithms for the
b-matching problem, including a matroid-theoretic proof that the greedy
algorithm leads to 1/2-approximation. We have also designed 1/2- and 2/3-
approximation algorithms for vertex-weighted matching, using techniques
that differ from those used for edge-weighted matching. We summarize the
matching problems, exact and approximation algorithms to solve them, and
their time complexity in Table 9.1.

For the minimum weight edge cover problem we have discussed an approx-
imation-preserving reduction to the maximum weight matching problem,
leading to both exact and several approximation algorithms. The b-edge
cover problem has a rich collection of approximation algorithms, from the
greedy algorithm and variants, and a primal–dual algorithm; these algo-
rithms result in 3/2-approximation. The well-known b-nearest neighbour
graph construction leads to a 2-approximation for this problem, as do greedy-
like algorithms that do not compute dynamic effective weights, and an
algorithm that computes the complement of a suitable 1/2-approximation
matching algorithm. For the b-edge cover problem, we discussed a primal–
dual linear programming framework that helps establish the approximation
ratios of several algorithms. We summarize the edge cover problems, exact
and approximation algorithms to solve them, and their time complexity in
Table 9.2.

We have considered applications of matching to the solution of sparse
systems of linear equations and other matrix computations. For the b-
edge cover problem, we have discussed the construction and sparsification
of graphs from large, noisy data sets; we have also described the solution of
a data privacy problem called adaptive anonymity.

We believe that approximation algorithms represent a fruitful area for
progress in designing efficient algorithms for solving problems in CSC, data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

62
4

A
.
P
o
t
h
e
n
,
S
.
M
.
F
e
r
d
o
u
s
a
n
d

F
.
M
a
n
n
e

Table 9.1. Some of the exact and approximation algorithms for matching problems and their time complexity.

Problem Algorithm Reference Complexity

Maximum matching Micali and Vazirani (1980) O(
√
n m)

Maximum weight matching Gabow (2018) O(n(m+ n log n))

1/2-approximation MWM
Path Growing Drake and Hougardy (2003b) O(m)
Suitor Manne and Halappanavar (2014) O(m log ∆)

(2/3-ε)-approximation MWM Pettie and Sanders (2004) O(m log ε−1)

(1− ε)-approximation MWM Duan and Pettie (2014) O(mε−1 log ε−1)

Maximum b-matching Gabow (1983) O(
√
b(V) m)

Maximum weight b-matching Gabow (1983) O(b(V)min{m log n, n2})

1/2-approx. maximum weight b-matching b-Suitor Khan et al. (2016b) O(m log β)

Maximum vertex weight matching Spencer and Mayr (1984) O(
√
n m log n)

1/2-approximation MVM Greedy O(m+ n log n)

2/3-approximation MVM Al-Herz and Pothen (2019) O(m log ∆ + n log n)

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

A
p
p
r
o
x
im

a
t
io
n
a
l
g
o
r
it
h
m
s
in

C
S
C

625

Table 9.2. Some of the exact and approximation algorithms for edge cover problems and their time complexity.

Problem Algorithm Reference Complexity

Minimum EC
Norman and Rabin (1959),

O(
√
n m)

Micali and Vazirani (1980)

Minimum weight EC Weight trans. + MWM
Schrijver (2003),

O(n(m+ n log n))
Gabow (2018)

3/2-approx. minimum weight EC Weight trans. + 1/2-MWM
Schrijver (2003),

O(m)
Drake and Hougardy (2003b)

2-approx. minimum weight EC Nearest Neighbour Ferdous et al. (2018) O(m)

Minimum b-EC Huang and Pettie (2017) O(
√
b(V) m)

Minimum weight b-EC Complement of b′-matching
Schrijver (2003),

O(b′(V)min{m log n, n2})
Gabow (1983)

3/2-approx. min. weight b-EC
Primal Dual

Ferdous et al. (2018)
O(β ∆m)

Lazy Greedy O(m log n)

2-approx. minimum weight b-EC
b-Nearest Neighbour

Khan et al. (2018b)
O(m)

MCE O(m log β′)

(1 + ε)-approx. min. weight b-EC Huang and Pettie (2017) O(mε−1 log ε−1)

https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S0962492919000035

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cam

bridge Core term
s of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

626 A. Pothen, S. M. Ferdous and F. Manne

science, machine learning and other emerging application domains. We
expect that the increasing sizes of these problems and the availability of
parallel computing resources will demand the development of efficient and
concurrent approximation algorithms. We trust that this survey will stim-
ulate further work along these lines.

Acknowledgements

We are grateful to Bora Uçar, ENS Lyon, for his extensive comments
on our manuscript. It is a pleasure to thank our colleagues who have
collaborated with us on matching and edge cover problems: Arif Khan
and Mahantesh Halappanavar, both of Pacific Northwest National Labor-
atory; Florin Dobrian, Conviva Corporation; Ariful Azad, Indiana Uni-
versity; Ahmed Al-Herz, Purdue University; Johannes Langguth, Simula;
Aydin Buluç, Lawrence Berkeley National Laboratory; Mostofa Ali Pat-
wary, NVIDIA; Pradeep Dubey, Intel Corporation; Rob Bisseling, Utrecht
University; and Seth Pettie, University of Michigan. We also thank Peter
Sanders of the Karlsruhe Institute of Technology and Jens Maue of Zürich
for sharing with us their code for the (2/3 − ε)-approximation matching
algorithms.

REFERENCES2

D. Achlioptas and A. Naor (2005), ‘The two possible values of the chromatic num-
ber of a random graph’, Ann. of Math. 162, 1335–1351.

A. Agrawal, P. N. Klein and R. Ravi (1993), Cutting down on fill using nes-
ted dissection: Provably good elimination orderings. In Graph Theory and
Sparse Matrix Computations (A. George, J. R. Gilbert and J. W. H. Liu,
eds), Springer, pp. 31–55.

A. Al-Herz and A. Pothen (2019), ‘A 2/3-approximation algorithm for vertex-
weighted matching’, Discrete Appl. Math., under review. arXiv:1902.05877

R. P. Anstee (1987), ‘A polynomial algorithm for b-matchings: An alternative
approach’, Inform. Process. Lett. 24, 153–157.

A. Azad and A. Buluç (2016), Distributed memory algorithms for maximum car-
dinality matching on bipartite graphs. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), IEEE, pp. 32–42.

A. Azad, A. Buluç and A. Pothen (2017), ‘Computing maximum cardinality match-
ings in parallel on bipartite graphs via tree grafting’, IEEE Trans. Parallel
Distrib. Syst. 28, 44–59.

A. Azad, A. Buluç, X. S. Li, X. Wang and J. Langguth (2018), ‘A distrib-
uted memory approximation algorithm for maximum weight perfect bipartite
matching’, SIAM J. Sci. Comput., under review. arXiv:1801.09809v1

2 The URLs cited in this work were correct at the time of going to press, but the publisher
and the authors make no undertaking that the citations remain live or are accurate or
appropriate.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 627

A. Azad, J. Langguth, Y. Fang, A. Qi and A. Pothen (2010), Identifying rare cell
populations in comparative flow cytometry. In Algorithms in Bioinformatics:
International Workshop on Algorithms in Bioinformatics (WABI), Vol. 6293
of Lecture Notes in Bioinformatics, Springer, pp. 162–175.

H. Bast, K. Mehlhorn, G. Schäfer and H. Tamaki (2006), ‘Matching algorithms are
fast in sparse random graphs’, Theory Comput. Syst. 39, 3–14.

C. E. Bell (1994), ‘Weighted matching with vertex weights: An application to
scheduling training sessions in NASA space shuttle cockpit simulators’, Europ.
J. Oper. Res. 73, 443–449.

M. Birn, V. Osipov, P. Sanders, C. Schulz and N. Sitchinava (2013), Efficient par-
allel and external matching. In Euro-Par 2013 Parallel Processing, Vol. 8097
of Lecture Notes in Computer Science, Springer, pp. 659–670.

B. Birnbaum and C. Mathieu (2008), ‘On-line bipartite matching made simple’,
ACM SIGACT News 39, 80–87.

G. E. Blelloch, J. T. Fineman and J. Shun (2012), Greedy sequential maximal
independent set and matching are parallel on average. In Proceedings of the
24th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’12), ACM, pp. 308–317.

G. E. Blelloch, R. Peng and K. Tangwongsan (2011), Linear work parallel greedy
approximate set cover and variants. In Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’11),
ACM, pp. 23–32.

P. Boldi and S. Vigna (2004), The WebGraph framework I: Compression tech-
niques. In Proceedings of the 13th International Conference on World Wide
Web (WWW 2004), ACM, pp. 595–601.

P. Boldi, A. Marino, M. Santini and S. Vigna (2014), BUbiNG: Massive crawl-
ing for the masses. In Proceedings of the Companion Publication of the 23rd
International Conference on World Wide Web, ACM, pp. 227–228.

A. Buluç and J. R. Gilbert (2011), ‘The Combinatorial BLAS: Design, implement-
ation and applications’, Internat. J. High Perf. Comput. Appl. 25, 496–509.

R. Burkard, M. Dell’Amico and S. Martello (2009), Assignment Problems, SIAM.
Y. Cao and R. B. Sandeep (2017), Minimum fill-in: Inapproximability and almost

tight lower bounds. In Proceedings of the 28th Annual Symposium on Discrete
Algorithms (SODA), SIAM, pp. 875–880.

K. M. Choromanski, T. Jebara and K. Tang (2013), Adaptive anonymity via
b-matching. In Advances in Neural Information Processing Systems (NIPS
2013) (C. J. C. Burges et al., eds), pp. 3192–3200.

V. Chvatal (1979), ‘A greedy heuristic for the set-covering problem’, Math. Oper.
Res. 4, 233–235.

J. Cohen and P. Castonguay (2012), Efficient graph matching and coloring on
GPUs. Presentation available at:
http://on-demand.gputechconf.com/gtc/2012/presentations/S0332-Efficient-
Graph-Matching-and-Coloring-on-GPUs.pdf

T. F. Coleman and A. Pothen (1987), ‘The null space problem II: Algorithms’,
SIAM J. Algebraic Discrete Methods 8, 544–563.

T. F. Coleman, A. Edenbrandt and J. R. Gilbert (1986), ‘Predicting fill for sparse
orthogonal factorization’, J. Assoc. Comput. Mach. 33, 517–532.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

628 A. Pothen, S. M. Ferdous and F. Manne

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein (2009), Introduction to
Algorithms, MIT Press.

T. Davis and Y. Hu (2011), ‘The University of Florida Sparse Matrix Collection’,
ACM Trans. Math. Softw. 38, 1:1–1:25.

G. De Francisci Morales, A. Gionis and M. Sozio (2011), ‘Social content matching
in MapReduce’, Proc. VLDB Endowment 4, 460–469.

U. Derigs and A. Metz (1986), ‘On the use of optimal fractional matchings for
solving the (integer) matching problem’, Computing 36, 263–270.

M. Deveci, K. Kaya, B. Uçar and Ü. Çatalyürek (2013), GPU accelerated maximum
cardinality matching algorithms for bipartite graphs. In Proceedings of 19th
International Euro-Par Conference on Parallel Processing , pp. 850—861.

B. Dezső, A. Jüttner and P. Kovács (2011), ‘LEMON: An open source C++ graph
template library’, Electron. Notes Theoret. Comput. Sci. 264, 23–45.

F. Dobrian, M. Halappanavar, A. Pothen and A. Al-Herz (2019), ‘A 2/3-
approximation algorithm for vertex-weighted matching in bipartite graphs’,
SIAM J. Sci. Comput. 41, A566–A591.

D. Drake and S. Hougardy (2003a), Linear time local improvements for weighted
matchings in graphs. In Experimental and Efficient Algorithms (K. Jansen,
M. Margraf, M. Mastrolilli and J. Rolim, eds), Vol. 2647 of Lecture Notes in
Computer Science, Springer, pp. 107–119.

D. E. Drake and S. Hougardy (2003b), ‘A simple approximation algorithm for the
weighted matching problem’, Inform. Process. Lett. 85, 211–213.

D. E. Drake and S. Hougardy (2005), ‘A linear time approximation algorithm for
weighted matchings in graphs’, ACM Trans. Algorithms 1, 107–122.

D. Du, K. Ko and X. Hu (2012), Design and Analysis of Approximation Algorithms,
Springer.

R. Duan and S. Pettie (2010), Approximating maximum weight matching in near-
linear time. In 2010 IEEE 51st Annual Symposium on Foundations of Com-
puter Science (FOCS ’10), IEEE, pp. 673–682.

R. Duan and S. Pettie (2014), ‘Linear-time approximation for maximum weight
matching’, J. Assoc. Comput. Mach. 61, 1–23.

I. S. Duff and J. Koster (2001), ‘On algorithms for permuting large entries to the
diagonal of a sparse matrix’, SIAM J. Matrix Anal. Appl. 22, 973–996.

I. S. Duff and B. Uçar (2012), Combinatorial problems in solving linear systems.
In Combinatorial Scientific Computing (U. Naumann and O. Schenk, eds),
CRC, pp. 21–68.

I. S. Duff, K. Kaya and B. Uçar (2011), ‘Design, implementation, and analysis of
maximum transversal algorithms’, ACM Trans. Math. Softw. 38, 13:1–13:31.

F. Dufossé, K. Kaya and B. Uçar (2015), ‘Two approximation algorithms for bi-
partite matching on multicore architectures’, J. Parallel Distrib. Comput. 85,
62–78.

J. Edmonds (1965), ‘Maximum matching and a polyhedron with 0, 1-vertices’,
J. Res. Nat. Bureau Standards 69B, 125–130.

B. O. Fagginger Auer and R. H. Bisseling (2012), A GPU algorithm for greedy
graph matching. In Facing the Multicore-Challenge II (R. Keller, D. Kramer
and J. Weiss, eds), Springer, pp. 108–119.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 629

U. Feige and J. Kilian (1998), ‘Zero knowledge and the chromatic number’, J. Com-
put. Systems Sci. 57, 187–199.

S. Ferdous, A. Pothen and A. Khan (2018), New approximation algorithms for
minimum weighted edge cover. In 2018 Proceedings of the Seventh SIAM
Workshop on Combinatorial Scientific Computing, SIAM, pp. 97–108.

P. Fritzson (2014), Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach, Wiley/IEEE.

H. N. Gabow (1983), An efficient reduction technique for degree-constrained sub-
graph and bidirected network flow problems. In Proceedings of the 15th An-
nual ACM Symposium on the Theory of Computing (STOC ’83), ACM,
pp. 448–456.

H. N. Gabow (2018), ‘Data structures for weighted matching and extensions to
b-matching and f -factors’, ACM Trans. Algorithms 14, 39:1–39:80.

D. Gale and L. S. Shapley (1962), ‘College admissions and the stability of marriage’,
Amer. Math. Monthly 69, 9–15.

T. Gallai (1959), ‘Über extreme Punkt- und Kantenmengen’, Annales Universitatis
Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathe-
matica 2, 133–138.

A. H. Gebremedhin, F. Manne and A. Pothen (2005), ‘What color is your Jacobian?
Graph coloring for computing derivatives’, SIAM Review 47, 629–705.

A. H. Gebremedhin, A. Tarafdar, F. Manne and A. Pothen (2007), ‘New acyclic
and star coloring algorithms with application to computing Hessians’, SIAM
J. Sci. Comput. 29, 1042–1072.

A. George (1973), ‘Nested dissection of a finite element mesh’, SIAM J. Numer.
Anal. 10, 345–363.

G. Georgiadis and M. Papatriantafilou (2013), ‘Overlays with preferences: Distrib-
uted, adaptive approximation algorithms for matching with preference lists’,
Algorithms 6, 824–856.

M. X. Goemans and D. P. Williamson (1997), The primal–dual method for approx-
imation algorithms and its application to network design problems. In Ap-
proximation Algorithms for NP-hard Problems (D. S. Hochbaum, ed.), PWS
Publishing Co., pp. 144–191.

M. Grötschel and O. Holland (1985), ‘Solving matching problems with linear pro-
gramming’, Math. Program. 33, 243–259.

M. Halappanavar, J. Feo, O. Villa, F. Dobrian and A. Pothen (2012), ‘Approximate
weighted matching on emerging manycore and multithreaded architectures’,
Internat. J. High Perf. Comput. Appl. 26, 413–430.

N. G. Hall and D. S. Hochbaum (1986), ‘A fast approximation algorithm for the
multicovering problem’, Discrete Appl. Math. 15, 35–40.

S. Hanke and S. Hougardy (2010), New approximation algorithms for the weighted
matching problem. Research report 101010, Research Institute for Discrete
Mathematics, University of Bonn.

D. S. Hochbaum, ed. (1997), Approximation Algorithms for NP-hard Problems,
PWS Publishing Co.

J. Hogg and J. Scott (2015), ‘On the use of suboptimal matchings for scaling and
ordering sparse symmetric matrices’, Numer. Linear Algebra Appl. 22, 648–
663.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

630 A. Pothen, S. M. Ferdous and F. Manne

J. Hogg and J. Scott (2013), ‘Pivoting strategies for tough sparse indefinite sys-
tems’, ACM Trans. Math. Softw. 40, 4.

J. Hopcroft and R. Karp (1973), ‘An n5/2 algorithm for maximum matchings in
bipartite graphs’, SIAM J. Comput. 2, 225–231.

S. Hougardy (2009), Linear time approximation algorithms for degree constrained
subgraph problems. In Research Trends in Combinatorial Optimization (W. J.
Cook, L. Lovász and J. Vygen, eds), Springer, pp. 185–200.

B. C. Huang and T. Jebara (2011), Fast b-matching via sufficient selection belief
propagation. In Proc. 14th International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 361–369.

D. Huang and S. Pettie (2017), Approximate generalized matching: f -factors and
f -edge covers. arXiv:1706.05761

A. Idelberger and F. Manne (2014), New iterative algorithms for weighted match-
ing. In Norsk Informatikkonferanse 2014. www.nik.no/publikasjoner/

T. Jebara and V. Shchogolev (2006), b-matching for spectral clustering. In Proceed-
ings of the 17th European Conference on Machine Learning (ECML 2006),
Vol. 4212 of Lecture Notes in Computer Science, Springer, pp. 679–686.

T. Jebara, J. Wang and S.-F. Chang (2009), Graph construction and b-matching
for semi-supervised learning. In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML ’09), ACM, pp. 441–448.

D. Juedes and J. Jones (2012), ‘Coloring Jacobians revisited: A new algorithm for
acyclic and star bicoloring’, Optim. Methods Softw. 27, 295–309.

R. J. Kang and C. McDiarmid (2015), Colouring random graphs. In Topics in
Chromatic Graph Theory (R. J. Wilson and L. W. Beineke, eds), Cambridge
University Press, pp. 199–219.

R. M. Karp and M. Sipser (1981), Maximum matching in sparse random graphs.
In Proceedings of the 22nd Annual Symposium on Foundations of Computer
Science (SFCS 1981), pp. 364–375.

R. M. Karp, U. Vazirani and V. Vazirani (1990), An optimal algorithm for on-line
bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing (STOC ’90), ACM, pp. 352–358.

E. R. Keiter, H. K. Thornquist, R. J. Hoekstra, T. V. Russo, R. L. Schiek and
E. L. Rankin (2011), Parallel transistor-level circuit simulation. In Advanced
Simulation and Verification of Electronic and Biological Systems (P. Li, L. M.
Silveira and P. Feldmann, eds), Springer, pp. 1–21.

A. Khan and A. Pothen (2016), A new 3/2-approximation algorithm for the b-
edge cover problem. In 2016 Proceedings of the Seventh SIAM Workshop on
Combinatorial Scientific Computing, SIAM, pp. 52–61.

A. Khan, K. Choromanski, A. Pothen, S. Ferdous, M. Halappanavar and A. Tumeo
(2018a), Adaptive anonymization of data using b-edge cover. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’18), IEEE, pp. 59:1–59:11.

A. M. Khan, D. F. Gleich, A. Pothen and M. Halappanavar (2012), A multithreaded
algorithm for network alignment via approximate matching. In Proceedings of
the International Conference on High Performance Computing, Networking,
Storage, and Analysis (SC ’12), IEEE, pp. 64:1–64:11.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 631

A. Khan, A. Pothen and S. M. Ferdous (2018b), Parallel algorithms through ap-
proximation: b-edge cover. In 2018 IEEE International Parallel and Distrib-
uted Processing Symposium (IPDPS), IEEE, pp. 22–33.

A. Khan, A. Pothen, M. M. Patwary, M. Halappanavar, N. Satish, N. Sundaram
and P. Dubey (2016a), Designing scalable b-matching algorithms on distrib-
uted memory multiprocessors by approximation. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage,
and Analysis (SC ’16), IEEE, pp. 773–783.

A. Khan, A. Pothen, M. M. Patwary, N. Satish, N. Sundaram, F. Manne,
M. Halappanavar and P. Dubey (2016b), ‘Efficient approximation algorithms
for weighted b-matching’, SIAM J. Sci. Comput. 38, S593–S619.

S. Khuller, U. Vishkin and N. Young (1994), ‘A primal–dual parallel approximation
technique applied to weighted set and vertex covers’, J. Algorithms 17, 280–
289.

V. Knoblauch (2007), Marriage Matching: A conjecture of Donald Knuth. Working
papers 2007-15, University of Connecticut, Department of Economics.

V. Kolmogorov (2009), ‘BLOSSOM V: A new implementation of a minimum cost
perfect matching algorithm’, Math. Prog. Comput. 1, 43–67.

P. Kolyvakis, A. Kalousis, B. Smith and D. Kiritsis (2018), ‘Biomedical ontology
alignment: An approach based on representation learning’, J. Biomed. Se-
mantics 9, 21.

C. Koufogiannakis and N. E. Young (2011), ‘Distributed algorithms for covering,
packing and maximum weighted matching’, Distrib. Comput. 24, 45–63.

X. S. Li and J. W. Demmel (2003), ‘SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems’, ACM Trans. Math.
Softw. 29, 110–140.

L. Lovász and M. D. Plummer (2009), Matching Theory, AMS.
D. F. Manlove (2013), Algorithmics of Matching Under Preferences, World Sci-

entific.
F. Manne and M. Halappanavar (2014), New effective multithreaded matching algo-

rithms. In 2014 IEEE 28th International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, pp. 519–528.

F. Manne, M. Naim, H. Lerring and M. Halappanavar (2016), On stable marriages
and greedy matchings. In 2016 Proceedings of the Seventh SIAM Workshop
on Combinatorial Scientific Computing, SIAM, pp. 92–101.

F. M. Manshadi, B. Awerbuch, R. Gemulla, R. Khandekar, J. Mestre and M. Sozio
(2013), ‘A distributed algorithm for large-scale generalized matching’, Proc.
VLDB Endowment 6, 613–624.

J. Maue and P. Sanders (2007), Engineering algorithms for approximate weighted
matching. In Experimental Algorithms: 6th International Workshop on Ex-
perimental and Efficient Algorithms (WEA 2007), Vol. 4525 of Lecture Notes
in Computer Science, Springer, pp. 242–255.

S. T. McCormick (1983), ‘Optimal approximation of sparse Hessians and its equi-
valence to a graph coloring problem’, Math. Program. 26, 153–171.

C. McDiarmid (1984), ‘Colouring random graphs’, Ann. Oper. Res. 1, 183–200.
D. G. McVitie and L. B. Wilson (1971), ‘The stable marriage problem’, Commun.

Assoc. Comput. Mach. 14, 486–490.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

632 A. Pothen, S. M. Ferdous and F. Manne

K. Mehlhorn and S. Näher (1999), LEDA: A platform for combinatorial and geo-
metric computing. www.algorithmic-solutions.com/leda/index.htm

A. Mehta (2012), ‘Online matching and ad allocation’, Found. Trends. Theor. Com-
put. Sci. 8, 265–368.

N. S. Mendelsohn and A. L. Dulmage (1958), ‘Some generalizations of the problem
of distinct representatives’, Canad. J. Math. 10, 230–241.

J. Mestre (2006), Greedy in approximation algorithms. In Algorithms: 14th Annual
European Symposium on Algorithms (ESA 2006), Vol. 4168 of Lecture Notes
in Computer Science, Springer, pp. 528–539.

S. Micali and V. V. Vazirani (1980), An O(
√
|V | · |E|) algorithm for finding max-

imum matching in general graphs. In Proceedings of the 21st Annual Sym-
posium on Foundations of Computer Science (SFCS 1980), IEEE, pp. 17–27.

D. L. Miller and J. F. Pekny (1995), ‘A staged primal–dual algorithm for perfect
b-matching with edge capacities’, ORSA J. Comput. 7, 298–320.

M. Minoux (1978), Accelerated greedy algorithms for maximizing submodular set
functions. In Optimization Techniques: Proceedings of the 8th IFIP Con-
ference on Optimization Techniques (IFIP 1977) (J. Stoer, ed.), Springer,
pp. 234–243.

R. Motwani (1994), ‘Average-case analysis of algorithms for matchings and related
problems’, J. Assoc. Comput. Mach. 41, 1329–1356.

M. Müller-Hannemann and A. Schwartz (2000), ‘Implementing weighted b-
matching algorithms: Insights from a computational study’, J. Exp. Algo-
rithmics 5, 8.

R. C. Murphy, K. B. Wheeler, B. W. Barrett and J. A. Ang (2010), Introducing the
Graph 500. In Proceedings of the Cray User’s Group Meeting (CUG), 2010.

M. Naim and F. Manne (2018), Scalable b-matching on GPUs. In Proceedings of
the International Parallel and Distributed Processing Symposium Workshops
(IPDPS), pp. 637–646.

M. Naim, F. Manne, M. Halappanavar, A. Tumeo and J. Langguth (2015), Optim-
izing approximate weighted matching on Nvidia Kepler K40. In IEEE 22nd
International Conference on High Performance Computing (HiPC 2015),
pp. 105–114.

A. Natanzon, R. Shamir and R. Sharan (2000), ‘A polynomial approximation for
the minimum fill-in problem’, SIAM J. Comput. 30, 1067–1079.

U. Naumann and O. Schenk, eds (2012), Combinatorial Scientific Computing, CRC
Press.

R. Z. Norman and M. O. Rabin (1959), ‘An algorithm for a minimum cover of a
graph’, Proc. Amer. Math. Soc. 10, 315–319.

M. Olschowka and A. Neumaier (1996), ‘A new pivoting strategy for Gaussian
elimination’, Linear Algebra Appl. 240 (suppl. C), 131–151.

M. W. Padberg and M. R. Rao (1982), ‘Odd minimum cut-sets and b-matchings’,
Math. Oper. Res. 7, 67–80.

S. Pettie and P. Sanders (2004), ‘A simpler linear time 2/3− ε approximation for
maximum weight matching’, Inform. Process. Lett. 91, 271–276.

A. Pinar, E. Chow and A. Pothen (2006), ‘Combinatorial algorithms for computing
column space bases that have sparse inverses’, Electron. Trans. Numer. Anal.
22, 122–145.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

Approximation algorithms in CSC 633

A. Pothen (1993), ‘Predicting the structure of sparse orthogonal factors’, Linear
Algebra Appl. 194, 183–203.

A. Pothen and C.-J. Fan (1990), ‘Computing the block triangular form of a sparse
matrix’, ACM Trans. Math. Softw. 16, 303–324.

R. Preis (1999), Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In 1999 Proceedings of 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 99), Vol. 1563 of Lecture
Notes in Computer Science, Springer, pp. 259–269.

W. R. Pulleyblank (1973), Faces of matching polyhedra. PhD thesis, Faculty of
Mathematics, University of Waterloo.

S. Rajagopalan and V. V. Vazirani (1993), Primal–dual RNC approximation algo-
rithms for (multi)-set (multi)-cover and covering integer programs. In Proceed-
ings of 1993 IEEE 34th Annual Foundations of Computer Science (SFCS ’93),
IEEE, pp. 322–331.

A. Schrijver (2003), Combinatorial Optimization: Polyhedra and Efficiency, Vol. A:
Paths, Flows, Matchings, Springer.

R. Sinkhorn and P. Knopp (1967), ‘Concerning nonnegative matrices and doubly
stochastic matrices’, Pacific J. Math. 21, 343–348.

T. H. Spencer and E. W. Mayr (1984), Node weighted matching. In Proceedings of
the 11th Colloquium on Automata, Languages, and Programming (ICALP),
Vol. 172 of Lecture Notes in Computer Science, Springer, pp. 454–464.

A. Subramanya and P. P. Talukdar (2014), Graph-Based Semi-Supervised Learning,
Vol. 29 of Synthesis Lectures on Artificial Intelligence and Machine Learning,
Morgan & Claypool.

V. Tabatabaee, L. Georgiadis and L. Tassiulas (2001), ‘QoS provisioning and track-
ing fluid policies in input queueing switches’, IEEE/ACM Trans. Netw. 9,
605–617.

A. Tamir and J. S. B. Mitchell (1998), ‘A maximum b-matching problem arising
from median location models with applications to the roommates problem’,
Math. Program. 80, 171–194.

K. Tangwongsan (2011), Efficient parallel approximation algorithms. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA.

V. V. Vazirani (2003), Approximation Algorithms, Springer.
D. P. Williamson and D. B. Shmoys (2011), The Design of Approximation Algo-

rithms, Cambridge University Press.
L. B. Wilson (1972), ‘An analysis of the marriage matching assignment algorithm’,

BIT 12, 569–575.
M. Yannakakis (1981), ‘Computing the minimum fill-in is NP-complete’, SIAM J.

Algebraic Discrete Methods 2, 77–79.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000035
Downloaded from https://www.cambridge.org/core. IP address: 72.12.206.155, on 17 Sep 2020 at 19:18:19, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000035
https://www.cambridge.org/core

